An artful, asymmetrical arrangement of Cartesian planes and solids creates an overall impression of horizontality and solidity. Perceived voids at large areas of glazing provide an indoor-outdoor connection and accentuate the strength of the solid forms.

A long concrete retaining wall faces south and supports a plaza at the entry level. The grassy hill falls across the wall, emphasizing the geometry of the building in juxtaposition to the natural terrain of this corner of Burnet Woods.

The upper floors of the west-facing walls are clad in a monochromatic soft red brick. Openings with brick returns on the third floor hold paired windows with aluminum frames or square exhaust vents. The geometric composition of solids and voids is typical of this architectural style.
Appendix B

Alms Building

Exposed concrete structure

Concrete structural elements such as the floor, support columns, and stairs were designed to be visible and are an integral part of the design. Honest use of materials and forms reinforce the geometric composition.

Stone base

The first floor of the building on the west and south is clad with limestone. The joint pattern creates simple, large squares. The plane of the stone is recessed behind the brick wall above.

Fully glazed north exterior wall

Fully glazed north exterior wall allows natural light to enter the building to illuminate what were originally a library and a gallery. Aluminum frames and mullions divide the second floor into large panes of glass.

Building entry

An asymmetrical canopy is supported by round concrete columns. A glass curtain wall behind the columns gives an open view into the entry lobby. Simple materials are used in an honest expression of structural systems.

Glass wall and stair

At the southeast corner, a floating concrete exit stair is clearly visible behind a three-story glass wall. The pieces of glass used in this composition are unusually large and are broken only by horizontal frame lines. The verticality of this element contrasts with the overall horizontality of the building mass and the entrance canopy.

Jalousie windows

Jalousie windows in aluminum frames appear in vertical bands at various locations around the building, often in an asymmetrical arrangement. These windows allow for natural ventilation. The pattern created by the frame provides a contrast to the other large planes of glazing.

Conditions

Modification

The balcony appears to have been cut off or modified at the west end. It is unclear whether this is a repair.
Conditions (cont.)

<table>
<thead>
<tr>
<th>Maintenance</th>
<th>Structure</th>
<th>Structure</th>
<th>Moisture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sealant Failure</td>
<td>Concrete retaining wall is cracked.</td>
<td>Cast-in-place concrete header at window frame is damaged. Appears to be from movement of the large window below. Requires closer investigation.</td>
<td>Evidence of grade change or rising damp at concrete retaining wall.</td>
</tr>
<tr>
<td>Maintenance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stone damaged at grade by wheels of lawnmower.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modification</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vents have been added to the retaining wall, presumably for mechanical space inside. The interior of this space was not accessed.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Over time, new structures have been constructed adjacent and connected to the field house. The Shoemaker Center butts against the south side, the Campus Recreation Center adjoins on the west, and the CRC Student Residence Hall obscures the north face (which formerly was a glass-fronted lobby), where a service court has been constructed.
Vertical metal cladding

At the side of the structure facing the CRC Student Residence Hall, the building has been covered with vertical metal siding.

Conditions

<table>
<thead>
<tr>
<th>ADA Ramp</th>
<th>Broken glass blocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>A substantial wood ramp has been added to the east side of the building. The material, detailing, and execution appear temporary and do not fit the campus or the design of the fieldhouse.</td>
<td>At various locations around the building, glass blocks have broken and need replacement.</td>
</tr>
</tbody>
</table>
Appendix B

Aronoff Center
Peter Eisenman in association with Lorenz & Williams Associates 1996

Deconstructivist

When viewed from the north, the structure appears to be buried in the rolling topography of the former woodland. At this prominent public corner, the building shrinks back from making any public statement.

Building setting

Complex massing

Through the use of form, grid, and color, the structure gives the appearance of an assembly of complex geometrical shapes.

Incised in the synthetic stucco, grids are used to break up large planes. The grids change in scale and orientation and are part of the designer’s efforts to create geometrical illusions. Elsewhere, at window mullions, another grid breaks a plane of glass into smaller shapes.
Vertical wall planes are canted to lean out or back into the building. This use of leaning planes, similar to those employed by set designers, fools the eye into the perception that the building is slipping.

At the top of the lawn on the north side of the structure, large stucco-covered planes appear to cut through the main mass of the building. These “buttresses” are arranged in an irregular rhythm.
Aronoff Center

Monumental stair

The long exterior stair across the face of Clifton Court to Crosley Hall extends the imagery and materials of the Aronoff Center.

Building entry

The interior of the building is composed of rooms and spaces accessed and viewed from the continuation of the monumental stair into the interior.

Colored window frames

The entry doors are recessed deep under the overhanging mass of the end of the building. This location is not readily apparent to a first-time user.

A thin-line aluminum storefront system is used to glaze openings in the structure. The system is painted either red or blue. In some instances, the frame color changes at a diagonal line across the face of the window. The lack of flashings and weeps allows water penetration of the window system.

Synthetic stucco cladding

The color of the synthetic stucco is fading. This makes it difficult to touch up any painted areas. The strength of the colors contributes to the design of the structure.

The shaded location and north orientation of the building have contributed to significant biological growth. Streaks of growth are visible.

Synthetic stucco was chosen as the primary cladding material for the structure. This impermanent material gives a lightness to the structure that contradicts the large forms and leaning walls.

Stucco damage

Synthetic stucco shows damage on all sides of the building. The mesh is exposed, punctures reveal insulation, and large cracks appear in the walls. This damage allows water into this fragile cladding system.

Stucco fading

The color of the synthetic stucco is fading. This makes it difficult to touch up any painted areas. The strength of the colors contributes to the design of the structure.

Biological growth

The shaded location and north orientation of the building have contributed to significant biological growth. Streaks of growth are visible.
The five-part composition of central pavilion and flanking wings creates a formal terminus to the Baldwin Quad axis.

Symmetrical composition

The prominent formal temple-fronted pavilion features Ionic columns in antis. This strong composition confirms the building’s prominence and importance.

Temple front portico

An unbroken run of stone stairs across the entire front of the main entrance to the building welcomes students approaching from all directions. This formal feature begins the entry procession from the life of the quad to the academic functions of the building.

Stone stairs
Baldwin Hall

Brick and terra-cotta cornice

A strong brick and terra-cotta cornice caps the structure. Heavily detailed, the terra cotta features classical egg-and-dart molding. The variation of material in contrasting bands adds visual interest.

Windows

The use of six-over-six double-hung windows is typical of classical revival architecture.

Terra-cotta trim

Terra cotta is used at the belt course, water table, windows, and as decorative medallions in the brick walls. Heavily cast detailing provides deep shadow and texture to the large planes of the exterior.

Brick bond pattern

Great attention was given to the use of brick bond on the building. Large planes of running bond are broken by bands of Flemish bond pattern.

Conditions

Maintenance

Much of the terra cotta has been painted. The paint is failing by chalking and in many locations streaks of chalk are washing down the building. The reason for painting the terra cotta is unclear. The color of the paint does not appear to match the color of the terra cotta.

Cracking at terra cotta

In various locations, the terra cotta is cracking and breaking. Pieces have fallen out and patches are evident. This could be the reason that the university chose to paint the material.

Sealant Failure

Repairs to the sealed joints of the building can be seen in various locations. The color of sealant does not blend well with the mortar or terra cotta.

Maintenance

Rubber strips have been placed over the butt joints in the terra cotta. The material itself is becoming brittle. It is unclear why this solution was chosen. The strips are prominent and interrupt the lines of sills and other running trim.
A new arched ramp has been designed to work with curved walls in front of the building. While ramps are not usually recommended for primary facades, the incorporation of the ramp into a symmetrical landscape that complements the façade has worked nicely.

The six-over-six windows appear to be replacements, perhaps of fiberglass. The muntin arrangement and sight lines of frames and sashes are at home in this classical revival style.

At column bases and elsewhere on the building, open mortar joints have allowed water to penetrate. Spalling of the face of the terra cotta is visible at many of these open joints.

Spot repairs are visible throughout the terra cotta. The original material may have inherent flaws that led to the observed failure.

Cracks in lintels above right pavilion windows can be seen from the ground.
Baldwin Hall

Murals located in the Engineering Library were painted by Frances Faig in 1911 (student of Frank Duveneck). The murals were restored in 2004 during the Engineering Library renovation.
Appendix B

Blegen Library
Hake & Kuck, 1930
Burgess & Niple Limited, Architects, interior redesign 1980

Deco with classical decoration

The front face of the building is primarily stone with some brick accents. The sides and rear are almost completely brick above a cut stone base.

The main entry to the building is at the fourth floor. At the entry, an areaway or moat separates the building from the front lawn. A bridge crosses the areaway to access the front door. At the top of the areaway, a concrete balustrade forms the guardrail. The passage from the hilltop across the areaway and into the building imbues a sense of psychological importance to the structure.

The large building is designed as a large rectangular volume. There is a tower on the rear, east side. From the east, the building has great presence.

All sides of the structure are composed in a symmetrical manner. The main entry is on a formal axis with Straight Street.
The large stone cornice is simple in form but provides a strong cap to the building and contributes to the sense of importance conveyed by the architecture.

Windows at the upper two floors on the north and south are stacked vertically and joined by a band of stone trim. Metal bas-relief panels are located at the interstitial spaces. Window muntins are of varying thickness to create a hierarchical pattern.

The use of decorative bronze work at the entry is similar to that used in screens at the second-floor windows. Here, Minerva stands above a series of bas-reliefs that tell the story of book making. (Bennett)

There are two large, bronze light pylons at the front entry. They are mounted on stone plinths. A lantern at the top of a thick column provides the light. These pylons are unique and are designed to complement the other imagery found on the building. The use of pigtail bulbs inside the lantern lessens the image of strength.

Bas-relief stone panels are located below windows and give the appearance of balconies on the west façade. The figures represent great thinkers and philosophers from Eastern and Western intellectual history. (Bennett)

The original open stair between the entry level and the reading room remains.

The large volume of the reading room remains intact. Light fixtures and moldings work with the large side windows to give the double-height room an air of importance.
Reading room
A bronze screen with doors serves as an entrance to the reading room. Stylized owls and other decorative motifs are incorporated into the screen.

Display cases
In the main lobby, a bulletin board and display cases remain. Parchment colored marble and bronze detailing can be found at each of these.

Corridor wainscot
At the first floor, marble wainscot and door surrounds remain in the main hall.

Plaster moldings
In the corridors and open stairs of the interior as well as the library reading room, decorative plaster moldings remain.

Light fixtures
Interior lighting fixtures continue the decorative themes established on the exterior. These octagonal fixtures are strong elements of the interior design.

Conditions
- **Site-related moisture**
 - During our observation, erosion control fabric was being installed on the south side of the building. With the structure built into the hillside, there appears to be difficulty removing water from the areaway and around the structure.

- **Cornice flashing**
 - At various locations, the flashing on top of the projecting stone cornice is raised.

- **Color of pointing**
 - Areas of joints in the stone have been repaired using a white product. This appears from a distance to be sealant, but it could be white mortar. Pointing of vertical surfaces with sealant is not structurally sound. The color of the materials stands out against the tan stone plane.
Staining of stone is visible in various locations on the building. There are two types of staining. The black stains at the cornice are biological growth related to moisture. Elsewhere, water running off decorative bronze work has resulted in verdigris staining of the stone.

This exposed stone wall is particularly vulnerable to freeze-thaw cycles. As a result, stone units are displaced and joints have been opened to allow water direct entry. In some areas, sealant has been used in an attempt to stop water infiltration.

Beneath one pilaster, bricks have been inserted to help support stone. Concealed behind a thick hedge, this damage is not readily apparent. The possibility of pieces of the wall falling into the areaway should be considered and repairs made to prevent further damage to the stone.

A single row of trees has been planted on line with the main entry to the building. The trees obscure the axial view to the building entrance from Straight Street.

Pigtail™ fluorescent light bulbs have been placed in decorative light fixtures on the interior and exterior of the building. Where bulbs were meant to be exposed, decorative incandescent bulbs should be used.

All of the bronze detailing on the exterior of the building needs to be conserved.
The imposing symmetrical façade creates one end of McMicken Quad. The five-part composition recalls the classical design of earlier campus buildings.

Centered in the long façade is a detailed entry portal with bronze panels and bas relief above. The straight line of the parapet is broken by a slight arch above the portal.

Tall, arched, head windows provide vertical emphasis on this long horizontal building.
The design employs variations of brick bond. Flemish bond is used in some areas while rows of alternating headers and stretchers are placed every six rows in a field of running bond in others. Running bond was used for the addition.

Stone is employed at the base, the belt courses, and the wall cap. The base includes deeply cut circle-in-a-circle.

Decorative stone octagons with the names of great scientists carved in the center are located above each of the major window units on the south main façade.

The original marble entrance foyer remains intact including light fixture and decorative vents at the cornice.

An original bronze building directory is located on the wall in the corridor.
Braunstein Hall

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Rear terrace</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addition</td>
<td>An addition was made to the east and northeast. The detailing, scale, and setback are all respectful of the original design.</td>
</tr>
<tr>
<td>Rear terrace</td>
<td>At the rear, a terrace has been constructed over a loading dock to connect to the Geology-Physics building.</td>
</tr>
<tr>
<td>Replacement doors</td>
<td>The new construction cuts into the tops of the round arched windows.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Replacement windows</th>
<th>Window infill</th>
<th>Limestone damage</th>
<th>Open joints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows in the stone surrounds have been replaced with new units featuring dark frames and sashes.</td>
<td>Some windows have been infilled with stone.</td>
<td>Along the wall adjacent to the accessible ramp, salts have damaged the limestone. Elsewhere, the base has been chipped and joints show spalling at edges of the stone.</td>
<td>At the stone base, mortar loss has been repaired with sealant. Vertical joints should be repointed with mortar in a color selected to approximate the original.</td>
</tr>
</tbody>
</table>
Braunstein Hall

Original bronze doors.
The west and east sides of the building have a vertical window band centered in a modulated brick wall. The thin band and brick piers accentuate the verticality of the structure.

A low podium sets the base of the building above the adjacent sidewalk and planting bed. A short run of steps provides access to the entrance landing.

The large curtain wall faces of the structure are composed of dark window frames with dark interstitial panels between. Separated by aluminum ribs, the windows recede and emphasize the verticality of the ribs.
Calhoun Hall

Seating area along Calhoun Street

Though the structure parallels Calhoun Street, with only a shallow setback from the public right-of-way, a recessed seating area—with built-in seating and a line of trees—buffers traffic from the dormitory.

Detailing of aluminum

The aluminum ribs used in the curtain wall extend above and below the main plane of the wall.

At the top, they provide a modern interpretation of the Gothic style characteristic of adjacent buildings.

Material choice

The use of red brick helps make the building compatible with prior buildings in the area including Memorial Hall.

Conditions

Sealant failure

At joints in the cap of the podium, sealant has failed and water has washed down the face of the brick leaving a white deposit.

Dark screens

Window screens have been replaced on an irregular basis with screens that are darker than the originals. The mix of screen colors breaks up the original design intent of streamlined vertical bands between aluminum ribs.
At the corner of the garage, concrete banding aligned with the parking decks wraps around a glazed stair tower. One of the bands extends away from the stair tower and connects to a freestanding concrete column.

By using tan brick at the first three levels and leaving the cast-in-place concrete exposed at the upper levels, the designer has broken up the large mass of the garage structure.

The parking decks are fully expressed on the exterior of the garage, creating a horizontal banding pattern against the dark shade of the open space between.

White sealant has been used to repair cracking masonry.

Glazed stair tower

Material choice

Conditions

- Sealant color

Photo not available
Campus Green Drive Garage

Conditions (cont.)
Diagonal cracking

Diagonal cracking of masonry can be seen above the opening to the garage. The lintel does not appear to be strong enough to support the long span.

The bottom of windows are either etched from water and dirt or laminated glass is discoloring.
As MainStreet arcs around the side of the CRC, steps transition between the ramp of the street and the entry grades of the CRC.

The end of the CRC that faces Nippert Stadium has large boxy forms. While the CRC forms a wall of the stadium and gives form to that space, the boxy forms read as the ends of trusses and give the impression that the CRC has turned its back on the stadium.

The pool is located on the Campus Green side of the structure. The use of large panes of glass provides visual access to the pool from the exterior and the CRC.
Appendix B

Campus Recreation Center

Expressed structure

Wedge-shaped supports are clad in large horizontal metal panels, giving an impression of solidity and support. Structural trusses are wrapped in vertical panels similar to the main walls of the building. These structural elements become sculptural forms.

Interior plaza

A large, open-air plaza is located between the pool and the workout areas. It is covered by the folded roof which has been pierced with round holes to allow some daylight to enter. The overall feeling is one of dark enclosure. Views through the pool area to the outside help provide orientation.

Exterior stairs

A large, open run of stairs on the east side connects the lower plaza with the upper. By the use of dark ceilings and large overhangs, the definition between indoor and outdoor spaces is blurred. The overall impression of covered spaces in the building is one of dark shade.

Relationship between indoor and outdoor

Facing the Sigma Sigma Commons, a folded roof with large overhang houses the pool. Large pylons support the roof.

Folded roof

The walls of the structure are composed of metal-framed-storefront and vertical-metal-panel systems. The ground-level storefront is topped by a solid wall of vertical panels.

Wall cladding

Attention has been given to how materials are attached and structural elements are joined together. An example of this is the handrail at the freestanding exterior stair.

Detailing

At the opening at south end of the CRC, over the stadium, a joint between concrete and metal panels is open.

Material joint transition
The building is set back from Albert Sabin Way at the rear of Levine Park. It is dwarfed by the adjacent Medical Sciences Building.

On the north side, concrete beams and columns screen the windows at the major wall plane beyond.

At a corner, skewed cubes cantilever from the building face at 45-degree angles. The cubes are sheathed in glass, contrasting the more solid pre-cast supporting wall.
Cardiovascular Research Center

<table>
<thead>
<tr>
<th>Entrance canopy</th>
<th>Pre-cast concrete</th>
<th>Multi-story atrium</th>
</tr>
</thead>
<tbody>
<tr>
<td>A concrete entrance canopy supported by a single concrete pier protects the entry doors to the atrium. The entrance is located in a recess adjacent to the Medical Sciences Building.</td>
<td>The exterior of the structure is covered in a light-colored pre-cast system.</td>
<td>Concrete bridges traverse the center of the atrium. The bridges and the balcony circulation system are protected by perforated metal guardrails.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Multi-story atrium (cont.)</th>
<th>Conditions</th>
<th>Rust</th>
</tr>
</thead>
<tbody>
<tr>
<td>At the elevator towers, glazed red brick is used to infill between concrete structural members.</td>
<td>Damage to pre-cast</td>
<td>Water is working through joints in the concrete under the second-floor deck on the exterior. Reinforcing steel set close to the concrete surface is rusting and causing spalling.</td>
</tr>
<tr>
<td>At the first floor, corners of the pre-cast sill have been broken. Water is entering the structure through an open joint resulting from the damage.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The Corbett Theater was constructed in 1972 of cast concrete and copper. While most of the original building is left exposed, new red brick walls wrap around the theater to create a series of small courtyard gardens, a contrast between old and new.

The building is “engaged” with the topography of the ravine. Doors and windows open to the exterior on multiple grade levels. The sinuous fit accommodates multiple components including McMicken Commons, CCM Plaza, and the Theater Lobby.

The exterior “public side” is heavily planted—raised beds with seatwalls, ravine slopes, etc.—creating a green buffer around the building.

The large open plaza provides for mingling of pedestrian and vehicular traffic. The brick herringbone with precast banding in a radial pattern breaks the large paved area down to a human scale.
Connection between these spaces is accomplished by the use of intersecting multi-story lobbies.

Window units are composed as horizontal bands in aluminum or stainless steel framing. Continuous horizontal mullions not broken by verticals echo the pattern of the brick banding.

Brick wall cladding in warm reds and browns is broken by horizontal header bands every six courses. This horizontal emphasis is further enhanced by the use of Bluestone caps at walls and parapets.

Significant existing performance spaces have been embedded in later additions.

Window composition

Detail of wall cladding

The use of a flat roof further emphasizes the horizontal aspect of the structure. Parapets and roof edges are finished with a Bluestone cap.

An interior “street” design is used to organize the office/classroom wing.

Expansive vaulted lobbies with glass end walls open to significant plaza spaces. This not only maintains a connection between the building and the site, but it allows the building occupant to remain oriented to the multiple levels and exits.

A grand stair with monitor skylights at terminus.

Integration of existing structures

Window composition

Detail of wall cladding

Roof design

Interior organization

Glass lobbies

Skylights

CCM Village
Railing system

Inside the building, horizontal aluminum railing is used with glass panels to create guardrails. This open treatment of balconies and walkways contributes to the airy feeling of the lobbies.

Conditions

<table>
<thead>
<tr>
<th>Biological growth</th>
<th>Efflorescence at pavers</th>
<th>Efflorescence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Significant biological staining can be seen below caps on parapets and walls. The staining is aligned with joints in the Bluestone cap.</td>
<td>The large areas of efflorescence at the entry to the building are evidence of the use of salts in winter.</td>
<td>At various locations around the building, significant efflorescence can be found on masonry walls. The high concentration of salts is an indicator that a large amount of moisture is traveling through the wall.</td>
</tr>
</tbody>
</table>

Sealant failure

At horizontal joints in the Bluestone caps, sealant has failed, allowing water to penetrate into the masonry below. The large areas of biological staining are evidence that these areas remain wet.

In locations of open joints in the masonry, sealant has been replaced. The color of sealant should be matched to the original color of mortar.
Appendix B

Clifton Court Garage

Cost Concrete

Wall treatment and entrance block share detailing similarity with Rieveschl Hall and Crosley Tower.

Brutalist detailing

Stair tower

Detail

A mushroom-topped staircase connects Crosley Tower to the Clifton Court and garage. The brutalist detailing of the walls and roof creates an impression of solidity and permanence.

The edges of the court and the entrance to Rieveschl are closed in using a cast-in-place guardrail similar to those used around Crosley Tower.
Steel reinforcing was placed too close to the surface of the concrete. Water has run through an open joint and caused the steel to rust. This oxide jacking has spalled concrete and exposed the steel to the elements. This exposed steel reinforcing is rusting.
The 1965 addition to the College of Law completely surrounded the original 1925 Georgian Revival Taft Hall. The façade, including massive columns, was removed.

The building is sunken into a large berm along Clifton Avenue. The naturalistic landscape provides a contrast to the strong rectilinear forms of the building.

The building exterior is composed of large, rectangular boxes. Windows, recesses, and cantilevered concrete planes break the large mass.

Large brick volumes are cantilevered from the face to the building. Windows run the length of the cantilever and strengthen the visual impact.
College of Law

The main entrance to this building faces Clifton Avenue, not the campus. The former Taft Hall by Harry Hake was oriented toward the street and was the terminus of the street-facing row of buildings of the early campus.

Exposed ceiling/floor structure

Beneath the cantilevered boxes and at the top of recesses, the cast-in-place coffers of the exposed floor/ceiling system are clearly visible. The clear expression of the structural system becomes a regular pattern, providing a contrast to the large planes of brick.

Dark windows

Dark glazing in dark frames is used to accentuate the shadows of large overhangs and cantilevers. These dark voids help break up the apparent mass of the large rectangular volumes.

Granite steps

A monumental run of granite steps connects the building to the public sidewalk on Clifton Avenue. Its simple, heavy form complements the rectangular forms of the building.

Interior atrium

The structure showcases a double-height atrium space with skylight.

Conditions

Sealant color

Vertical masonry expansion joints have been sealed with a light-colored sealant, drawing unnecessary attention.
The large planes of the residence hall form a visual edge to the Sigma Sigma Commons. The slick white finish and streamlined horizontal lines are a contrasting backdrop to the planes of grass and tree groves of the commons area.

The form of the building is an unequal chevron open to the Campus Green. The receding vee of the building gracefully terminates the view up the major campus green space.

A loggia formed by columns with concrete cladding creates a walk of deep shade behind the berm that terminates Sigma Sigma Commons. Students walk through this shaded area to access the CRC and Main Street beyond. This walk complements the areas of dark shade within the CRC and on the MainStreet elevation.
Opening in west end

At the west of the building, adjacent to MainStreet, there is a large rectangular opening through the dormitory. Half of the opening is glazed, the other is open air. The steel structure of the building is exposed and celebrated.

Prow at MainStreet

In a dynamic gesture, the structure looms over MainStreet. Visually supported by a large pylon, the large boxy end of the dormitory appears to float above the pedestrian way below. Across MainStreet, a similar prow can be seen on the Steger Student Life Center.

Horizontal aluminum siding

Aluminum siding with a white painted finish was selected for the building cladding. The horizontal joints create a shadow pattern that emphasizes the low, horizontal form of the building.

Horizontal slit windows

Narrow bands of horizontal windows are randomly stretched across the face of the building. Again, the selection of this form emphasizes the horizontality of the structure.

Shade devices

With no overhang, windows are completely exposed to the sun. To reduce the amount of solar gain, the windows on the south elevation are protected with a projecting louver. This louver provides relief to the large flat plane of the building wall.

Precast concrete

The precast-concrete base of the dormitory is exposed facing the service court on the south. Horizontal grooves are cast into the concrete to extend the pattern of the aluminum siding into the court and to the ground plane below.

Conditions

Expansion joint

The building expansion joint at the Armory is flapping when the wind blows.

Sealant

The building materials rely on sealant in a variety of important locations. It will be necessary for the maintenance department to monitor the sealant condition and replace joints when appropriate.
This building can be seen from almost all locations on campus. The profile of the tower was used in past marketing brochures. The image of the tower was closely identified with the university.

A concrete plaza surrounds the tower on all sides. A cast-in-place concrete wall surrounds the plaza and connects to the adjacent Clifton Court Parking Garage. Cast-concrete planters are located at the four corners of the plaza.

Simple cantilevered seating is cast into the walls that surround the plaza.
Crosley Tower

Round holes at soffit

Where the roof flares out at the top of the building, round holes are placed in what can be described as a soffit.

Cast-in-place concrete

This multi-story cast-in-place-concrete structure is unique on campus. It is an example of a continuous concrete pour often used for Brutalist buildings.

Lobby

The spare lobby is composed of hard-surfaced materials. A central kiva including built-in seating and a low table is centered in the open space.

Conditions

Spalling at cornice

Site wall modified

Sections of the cast-in-place site walls have been cut out, presumably to provide emergency, pedestrian, and vehicular access to the plaza.

Terra cotta planters

In an attempt to humanize the stark plaza around the structure, large terra-cotta planters with trees have been installed. The form and color are visually jarring in this concrete landscape. More suitable planters are available.

Replacement lighting

Decorative light poles located in the formal concrete planters have been modified by the exchange of the light fixture. More suitable fixtures should be selected.

Exposed rebar

At various locations on all sides and many heights, rebar used in the construction of the cast-concrete walls is exposed. The rebar appears to have been placed too near the surface of the concrete. Water has caused the rebar to corrode and spall the concrete. This exposure, corrosion, and spalling will accelerate.
In response to this site, formerly a part of Burnet Woods, a concrete bridge connects the sidewalk and the entry plaza. Constructed of cast concrete supported by two pylons, the bridge is made more delicate by the use of pipe railings.

The use of open pipe rails is characteristic of the modernist era. Delicate and horizontal, the railings are cast into the structure.

At the connector between DAAP and Alms, the concrete structure of the building is visible behind the glass wall. Round columns and the concrete floor sit just inside the glazing.
At the right side of the main façade, the interior stair is made fully visible behind a wall of glass. The large void created by the glass wall contributes to the composition of the façade. The angled stair enlivens the rectilinear modernist components of the building.

Between DAAP and the existing Alms Building, a glazed connector was used. This transparent walkway separates the two structures visually and contributes to the designed massing that is so important to both structures. Seeing students moving across the connector adds visual interest.

A rectangular volume finished in synthetic stucco has been constructed in the plaza in front of the DAAP building. This entrance block is associated with the Aronoff Center constructed at the rear and appears to pierce the original addition.

Where the concrete floor structure extends through the face of the building to create a canopy at the first floor, concrete is spalling and reinforcing bars are exposed and rusting.
Appendix B

Dabney Hall

Potter, Tyler, Martin & Roth, 1960

Modernist

Horizontal mid-rise

The low, horizontal emphasis of the building and mid-rise construction work well with the site—neither overwhelming nor inconsequential.

Massing

The building is composed of large masonry blocks that appear to slide past each other. The box form is accentuated by the open loggia at the north leg of the “Z” where pedestrians can walk under the block.

Windows punched in flat facade

The large planes of uniform red brick are broken only by paired windows stacked in vertical alignment. The pattern created by the windows is simple and bold and in keeping with the form of the building.

The plan takes the form of an elongated “Z.” The elbows of the shape create protected plazas tucked off the main campus circulation paths.
Dabney Hall

Open loggia

The north leg of the “Z” is open on the first floor to create a loggia. The loggia connects to the adjacent, later, French Hall. Passing through the loggia, pedestrians enter a courtyard plaza formed by the zigzagging plan of the two buildings.

Glazing at first floor

In a gesture similar to the loggia at the north, the first floor of the central block is fully glazed to create the impression of a void beneath the large masonry block above. A decorative mullion pattern creates an up-and-down rhythm.

Horizontal stone

Thin pieces of limestone laid in a horizontal pattern are used at the building entry to clad a one-story box form that appears to slide under the large masonry box above. The texture and color of the stone are typical of the era.

Conditions

<table>
<thead>
<tr>
<th>Mosaic tile damage</th>
<th>Window replacements</th>
<th>Masonry damage</th>
<th>Window units</th>
</tr>
</thead>
<tbody>
<tr>
<td>The ceramic tile at the base of the round columns is damaged, perhaps due to maintenance procedures.</td>
<td>The paired windows appear to have been replaced. The dimensions of the sashes and frames appear heavy for the architectural style. The dark-colored frames are not appropriate to the period.</td>
<td>A brick has spalled above one window. It is unclear whether the spalling is a result of movement or moisture.</td>
<td>Window air-conditioning units have been installed at almost all windows along one wall. The paired units create a decorative pattern on the wall. Moisture from the units is dripping on the masonry.</td>
</tr>
</tbody>
</table>
Daniels Hall

Brick residence tower

This high-rise residential tower is constructed of uniform red brick. Vertical emphasis is provided by dark windows aligned vertically. At the top of the building, a fully glazed band of windows caps off the central bay.

A retaining wall carves out a space facing Jefferson Avenue that is used for loading and trash collection.
The dark windows and vents in the building are not set off by any trim and appear as punched openings in the monolithic tower.

A thin metal-clad canopy is cantilevered above the building entry. The thin, horizontal plane contrasts with the vertical emphasis of the other building elements.

A light-colored sealant has been used to make repairs on the face of the building. A sealant color that matches the mortar color would be more appropriate.
Axial alignment and symmetry

The symmetrical arrangement of seven round-arched windows is placed on axis with Nippert Stadium, terminating the end zone view.

Symmetry

The building also completes a “quad” with CCM and Memorial Hall.

The front façade is composed of a central pedimented bay with flanking one-story wings. The strict symmetry is typical of this classical revival style.
Dieterle Vocal Arts Center

<table>
<thead>
<tr>
<th>Tripartite arched windows</th>
<th>Entrance</th>
<th>Terra cotta cornice</th>
<th>Brick detailing</th>
</tr>
</thead>
<tbody>
<tr>
<td>The round-arched windows are divided by strong vertical mullions to create a tripartite pattern.</td>
<td>An elaborate terra-cotta architrave with egg-and-dart molding surrounds the entrance doors. To each side of the doors a decorative panel is inset between spiral quarter columns. Above the entire composition is a hood composed of scrolls and acroteria. Black metal light fixtures are affixed to the terracotta with diamond-shaped base plates.</td>
<td>The deep, heavy terra-cotta cornice is composed of large scrolled brackets and dentils supporting a classical crown molding.</td>
<td>This building owes much of its presence to the solidity and mass created by the attention of masonry detailing. Constructed of Flemish bond, decorative sawtooth brick bands are used to create a heavily rusticated base. This sawtooth detailing has been repeated on later buildings such as the entry to Nippert Stadium.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Belt coursing</th>
<th>Arch detailing</th>
<th>Green tile roof</th>
<th>Ornamental copper collection boxes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strong, off-white terra-cotta belt coursing wraps around the building.</td>
<td>Terra-cotta voussoirs are placed at regular intervals along each window arch. On an inner brick band, smaller terra-cotta blocks are spaced equally between the keystones, creating a decorative pattern.</td>
<td>Unique on campus, this green glazed-tile roof appears to be in good condition.</td>
<td>Ornate copper collection boxes feature geometric patterns and decorative scrolls. Matching decorative straps fix the gutters to the wall.</td>
</tr>
</tbody>
</table>
Dieterle Vocal Arts Center

Rehearsal hall

The open volume of the former gymnasium has been retained as a rehearsal hall, equal in size to the Corbett Auditorium stage.

Security lighting

Security lighting or a camera has been installed utilizing surface-mounted conduit.

Modification

The interior has been completely rehabbed. The entry foyer was constructed within projecting temple front.

Conditions

Maintenance

Sealant color is poorly matched.

Conditions (cont.)

Window frames

Wood frames require repair and paint.

Terra cotta

Throughout, terra cotta is chipped and cracked. This photo shows a crack at a window head, perhaps concealing a rusting steel lintel.

Entry doors

The original entry has been modified by the use of aluminum entry doors in original wood frames.

Windows

Double-hung, four-over-four window sashes have been replaced with aluminum. Original wood frames remain.
<table>
<thead>
<tr>
<th>Terra cotta</th>
<th>Cornice</th>
<th>Wildlife</th>
<th>Flagpoles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Throughout the exterior, the terra cotta has been painted. Paint is peeling.</td>
<td>Missing rosettes in soffit at cornice.</td>
<td>Squirrels have made a nest inside one of the decorative iron vents.</td>
<td>The decorative flagpoles located at each corner of the building facing the stadium need repainting.</td>
</tr>
</tbody>
</table>

Biological growth

Biological growth is visible below the water table on the stadium side.
At the south corner of the Hannaford structure, a concrete tower is painted orange and capped with a post-modern steel capital. Above the building, a large stack and coal-loading equipment are clearly visible from the street. The delivery of coal to the plant and its unloading are celebrated at the south end of the building, where the process is visible to the passerby.
Masonry Detailing

The original structure by Hannaford is built of a dark iron spot brick with minimal stone detailing. The brick is detailed to create a corbelled cornice and thin bands, highlighting window heads.

Windows

A thin belt of stone tops the corbelled cornice. Pilasters terminate in a stone cap with stone lozenges above. Stone punctuates the ends and center of decorative bands above the large windows. The original windows have been replaced with large, unbroken panes of glass in dark frames.

Stone Condition

The stone band that caps the stucco base is chipped.

Stucco Condition

At the base, stucco is cracking.

Bridge

A covered open-air bridge connects to the Eden Avenue Garage from an upper-floor window.
This parking garage was constructed in at least two phases. The structure to the south appears newer than that on the north. The north garage is built of tan brick with black window frames and dark glass. The south garage is constructed of cast-in-place concrete and galvanized steel. Along Eden Avenue, brick clad fins extend above the roof line and change material to concrete.

A glass-and-steel bridge extends across Eden Avenue to the face of the East Campus Power Plant.

At the west side/rear of the garage, another pedestrian bridge connects to a remote stair tower, collecting pedestrians from adjacent surface parking lots.

Along the south side of the south garage, steel panels and grids are attached to the parking deck.
Exit stair towers

At the southeast corner, a glazed cylinder is contained within the concrete structure by the steel grid. The exit stair winds up through the cylinder.

The exit stairs at the north garage are set just inside the main façade and are day lit with a full-height curtain wall. The stairs are topped with curved roofs.

Brick material choice relates the garage to other campus buildings.

Canopies

At the street level of the south garage, open steel canopies project from the face of the concrete.

Exposed steel is rusting.

Conditions

Rust

Moisture

Water is running under the wall at the face of the north structure and staining the face of the exposed concrete parking deck.

Efflorescence

At the south garage, moisture has caused efflorescence at the red brick.

Material continuity

Exposed steel is rusting.
Edwards Center, Vera Clements
David Childs of Skidmore Owings & Merrill with glaserworks, 1992

Precast concrete Solid form provides an edge to the campus; however, the building is not located directly at the corner. There is a large empty lot adjacent to the site. A long, low-rise building including offices and a parking garage are clad in brick and precast concrete. This structure acts as a podium for the office building. Office space faces Corry Boulevard and conceals the parking decks on the north elevation.

Skewed cube form

The building, above the podium, is skewed at a slight angle. We assume this to be the angle of the “force field.”

Building entrance

There are a number of building entrances facing Corry Boulevard. Each is recessed behind a colonnade with few external cues for the pedestrian.

Lighting

Decorative metal light fixtures are designed to be embedded in the column corners.
Precast concrete

The building, podium, and parking garage are all clad in a buff-colored precast concrete. A banding pattern is cast into the panels.

Soiling

The precast panels, especially at window sills, are soiled by runoff.
The entry plaza is differentiated from the paving of MainStreet by the use of concrete paving with a skewed grid pattern that continues the treatment of the interior floors. Flanking the entrance bay on each side are three formal, semicircular seating areas that form a retaining wall for landscaping. A tree is centered in each seating area.

To crown the entry bay of the building, the architect has used a two-story peripteral temple form. The upper level is open on all sides while the space between the columns is filled with glazing on the lower level.

The main bay of the ERC terminates the axis of W. University Ave. The entry plaza forms the lower end of the campus MainStreet.
Roof form

Clad in copper, the half-barrel roof form is distinctive on a campus where the majority of roofs are either flat or hidden from view. The end view, most visible when walking down Main Street, is bold and geometric.

Exterior entry stairs

The distinctive truncated cone roof monitors set on copper clad boxes create a unique roof profile. Pedestrians can see these monitors from many locations on campus.

Connection to Rhodes Hall

Arranged symmetrically, just behind the brick piers that form the base of the entry bay, large flights of stairs extend to the main lobby on the piano nobile.

Windows

The first-floor windows are half-round Romanesque forms set in sandstone base. Above, square, four-light windows are aligned rectilinearly. At the recessed connectors and on the ends, oculus windows are punched in the brick walls. Frames are heavy, dark anodized aluminum.

Oculus windows

The north and south facades feature a large brick wall with oculus windows punched in rows. These windows serve to light internal circulation hallways. The windows form a distinctive, strong pattern.

Wall materials

Using Ohio sandstone to clad the building base ties the building to other components of the built environment created since the 1990s. The salmon-colored brick contrasts with the predominate red brick of the campus, but provides a sense of permanence and solidity not found in other structures of the recent building period.

Brick color

A slight variation in color differentiates between the building bays and recessed connectors to accentuate massing.
Open joints

At the peripteral temple form at the top of the entry bay, joints are open, allowing water to run through. Water is directed down the face of the round ribbed columns below and removing the integral color. Other atmospheric staining is accentuated by the washing action of the water.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Sealant color</th>
<th>Sealant condition</th>
<th>Still color loss</th>
<th>Rust</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sealant color</td>
<td>Sealant is reaching the end of its life cycle. Weathering has resulted in chalking and alligating of the surface.</td>
<td>Window sills are formed by large, integrally colored concrete units. The color is washing out of the units and streaking the face of the building.</td>
<td>Still color loss</td>
<td>Rust at the exterior entry stairs on the west side, metal pans are rusting.</td>
</tr>
<tr>
<td>Sealant in joints on the building has either lost color or been replaced with a light color.</td>
<td>Sealant is reaching the end of its life cycle. Weathering has resulted in chalking and alligating of the surface.</td>
<td>Window sills are formed by large, integrally colored concrete units. The color is washing out of the units and streaking the face of the building.</td>
<td>Still color loss</td>
<td>Rust at the exterior entry stairs on the west side, metal pans are rusting.</td>
</tr>
</tbody>
</table>
Setting

The south wall of the arena forms the edge of a baseball diamond and a practice field immediately adjacent.

Connection

A long, narrow walkway runs along the south side of the building between the arena and the baseball diamond.

A monumental set of stairs makes the transition from the east entry plaza down toward Dabney Hall.
Purely functional in form and appearance, the arena building presents a large blank wall to the south. The focus of the building is on the inside, not the outside. The location of the Lindner Center conceals the west wall.

The building entrances are part of a large, dark glass wall recessed behind the freestanding columns and beams at the plane of the main façade.

The entrance doors are bright red. A matching bright-red stripe runs the length of the storefront glazing to unify the façade treatment. The red and black colors of the university become decorative building elements.

Precast-concrete detailing steps back at the corner to allow access to the entry colonnade and to bring light into the interior lobby.

Some areas of rust are visible on the precast concrete.
The flat roof defines the rectilinear form of the building, clad in tan brick and capped by a concrete cornice.

The walls extend unbroken from the ground level to the top floor where a row of windows surrounds the structure.

A cornice composed of a parapet and a window frieze is unified by concrete trim that extends beyond the windows from the cap and onto the wall below.
French East Building

Entry

A wall setback designates the main entry. Above the entry, the recess is covered with squares of book-matched limestone.

Verde Marble

An entrance canopy is supported by two concrete piers located along the center-line of the canopy. The canopy is positioned asymmetrically within the recessed entry.

To the right of the entrance door, verde marble panels cover the ground floor of the entry recess.

Biological growth is creeping up the wall above the window frieze.

Conditions

Cornice staining

Efflorescence

The pavers at the entrance show significant efflorescence.

Water Damage

Water damage is visible through the glass at the entry storefront system.

Stucco condition

Stucco applied over brick at the base is cracking from moisture. The grade has been lowered, exposing brick below the stucco.

Canopy spalling

Stone is spalling beneath the flashing at the entrance canopy. There appear to be two layers of flashing here.
This mid-rise, horizontal structure uses much of the same language as the adjacent Dabney Hall. The material and scale are appropriate to the siting and form of the structure.

Like many structures on campus, the first floor on one side is the second floor on the other. Here, a raised entry plaza, ramp, and concrete retaining walls create a base for the building on the west side.

The new building entrance is up a large flight of stairs into an atrium lobby. The stairs and lobby face the delivery dock for the newly constructed Campus Recreation Center.

A large barrel form is the massing focus of the new addition. The face of the barrel is broken up with a grid joint pattern and a single band of windows. Extending up behind the barrel is a complementary concave curved wall. Unlike the original building which features a pattern of rectangular windows regularly spaced across the façade, the addition is almost completely devoid of fenestration.
French Hall

Roof Deck

The roof of the barrel is finished as a roof deck and edged with a galvanized railing system.

Vent Stacks

Large stainless-steel stacks protrude prominently from the roof and enliven the roof line. The slick metal contrasts with the brick and texture of the precast.

Window pattern

Large fixed plate-glass windows are paired with smaller operable windows to create an asymmetrical muntin arrangement. Small vents below each window create a separate pattern on the wall.

Interior features—Design

A large atrium was created between the new structure and the original brick building. The brick remains exposed in the atrium.

Conditions

- **Open Joints**
 - At the connection between French Hall and Dabney, the joint is open. White sealant has been used to fill the joint, but a portion of the sealant is missing.

<table>
<thead>
<tr>
<th>Structural movement</th>
<th>Sealant failure</th>
<th>Loading Dock</th>
<th>Rusting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displacement of the brick wall at the parapet or cornice can be detected. Long planes of masonry with no relief or expansion joints can lead to such displacement. Horizontal cracking has resulted.</td>
<td>Water damage is visible through the glass at the entry storefront system.</td>
<td>A new loading dock beneath an aluminum-clad canopy faces the newly constructed Schneider Hall. The metal cladding at the loading-dock canopy has been damaged by trucks.</td>
<td>The attachment of the lights at the precast panels is rusting.</td>
</tr>
</tbody>
</table>

Appendix B

The glass at the atrium system is extremely dirty. This buildup of soil can lead to etching and permanent discoloration of the glass.
The building is almost completely surrounded by driveways.

Setting

Using the concrete structural system, large blocks cantilever from the face of the building. These create dark shady areas below.

Cantilevers

On the west side of the structure, beneath a large overhanging cantilever, a small box enclosed with glass extends by means of a smaller cantilever.

Granite base

The first floor is clad in horizontal blocks of gray granite. The rough face is exposed and provides a contrasting texture to the large planes of brick above.
Geology/Physics Building

<table>
<thead>
<tr>
<th>Exterior stair</th>
<th>Seating area</th>
<th>Building entry</th>
<th>Windows</th>
</tr>
</thead>
<tbody>
<tr>
<td>A long, undulating stair runs alongside the granite-clad foundation to connect the Clifton Court Driveway to Braunstein Hall.</td>
<td>A small, round, brick-paved sitting area is located on the west side of the building. The curved retaining wall acts as the seating.</td>
<td>A dark tunnel with the appearance of a service access road runs beneath the building, open on the east and west. The entrance to the building is located on one side of the tunnel.</td>
<td>Windows are mostly horizontal and are composed of a storefront system with dark mullions and large planes of glass. At cantilevers, vertical windows are arranged side-by-side across the face of the form. A recess with vertical glazing accentuates the connection of large box forms.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Slate roof</th>
<th>Coffered concrete</th>
<th>Loading dock</th>
<th>Atrium</th>
</tr>
</thead>
<tbody>
<tr>
<td>A sloped slate-covered roof tops the cantilevered boxes extending from the side of the structure.</td>
<td>The floor/ceiling system is coffered concrete. At cantilevers, the system remains exposed.</td>
<td>On the north side of the building, a loading dock faces the driveway to the Clifton Court garage. This loading dock is more easily identified and more prominent than the entry.</td>
<td>An internal atrium looks up through floors.</td>
</tr>
</tbody>
</table>
Conditions
Window coverings

At the vertical recess connecting the large forms of the structure, aluminum foil has been applied to the inside face of a window.

Soiled stone

The irregular face of the granite blocks used to clad the base has collected a large quantity of dust. The buildup is of sufficient quantity to change the apparent color of the blocks.
Health Professions Building
Samuel Hannaford & Sons, 1916

Beaux Arts
The building is constructed of a dark glazed brick, highlighted by stone trim. The rear of the building is completely surrounded by parking.

Symmetrical five-part façade
The building is composed as a central hall with recessed connectors on each side. At the ends, pavilions project forward.

Recessed connectors
Exit stairs are located at the recesses between pavilions. Three-story-high glazing daylight the stair halls. Decorative spandrels separate the windows.

Rear volume
At the west side, a separate volume, one story above a raised basement, is connected with a short hyphen. The low-sloped gable roof and pilasters give the impression that large trusses were used to create a large open space.
Health Professions Building

Rear volume (cont.)

In contrast to the concealed roof of the main structure, the rear volume is topped with a gable roof that terminates in projecting parapet walls.

Monumental entry

The monumental entry to the main floor is composed of a grand set of stairs with flanking walls. Atop the walls, cast iron light pylons with multiple globes draw attention to the entrance.

Cut stone surrounds the front door. The frame is decorated with a cartouche and university seal.

Base

The ground level foundation is constructed of cast-in-place concrete. At the window edges, the concrete is rubbed to add detail to the simple wall plane.

Areaways

At the east side, areaways extend below grade and are protected with heavy iron railings.

Windows

The majority of windows are paired sets of double-hung two-over-two windows with transoms above.

Cartouches

Carved stone cartouches are centered above the door and above the center windows located at the end bays.

Marble Entrance Vestibule

Just inside the front door is a small entrance vestibule clad in grey-veined white marble.
Exit stairs

The exit stairs, with cast-iron and wood railings remain in their original locations.

Art glass at auditorium

In the south-wing’s upper floor auditorium, leaded glass casement windows with brass hardware fill the openings facing east. The names and date of construction are found in one pane.

Plaster detailing

At the entry lobby at the rear building walls are decorated with plaster festoons and a wall clock.

Conditions

Window replacement

At the rear volume, double-hung two-over-two windows stand beside fixed replacement windows.

Balconies removed

What appear to have been wrought iron balconies have been removed below the center windows in the end bays.

Window deterioration

Deferred maintenance at wood windows has resulted in paint failure and exposure of wood to the elements. Wood frames and sashes are deteriorating.

Rust

At the rear of the building, facing the parking lot, large louvered vents are unpainted and rusting. Rust is staining the building face.

Metal mullions and spandrels at the stair hall windows are rusting.
<table>
<thead>
<tr>
<th>Rust (cont.)</th>
<th>Stair and ramps are replacements</th>
<th>Window replacement</th>
<th>Concrete foundation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cornice flashing is rusting and staining the stone below. Note that the brick and stone detailing here match that found at Hannaford’s East Campus Power Plant.</td>
<td>The main entrance stair and ramp appear to be replacements.</td>
<td>The windows at the northern pavilion have been replaced with fixed panels. Mullion configuration does not relate to original window design.</td>
<td>At the rear volume, substantial cracking is visible in the concrete foundation. The cracks are predominantly associated with window heads.</td>
</tr>
</tbody>
</table>
Kettering Lab Complex

The Kettering Lab Complex is composed of four structures.

We have assumed that the building on the northeast is the oldest of the four structures. We assume the first addition to be the central block located to the south of the first structure. Modern interpretation. The third structure was built on the south side of the earlier buildings. On the west side, the largest of the four buildings, and most recent, has been constructed and joins all buildings together.

<table>
<thead>
<tr>
<th>Three-part composition of original building and first addition</th>
<th>Transition between additions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper floors are constructed of an orange-brown glazed brick with stone banding.</td>
<td>A band of glazing is used to make the transition between the third and second addition.</td>
</tr>
</tbody>
</table>
| The first floor is constructed in cast-in-place concrete. Decorative details are cast into the pour. A stucco slurry covers the concrete base at the first addition | }
The second addition has been constructed using a palette of materials similar to those of the earlier buildings.

At the third addition, brick and stone are interpreted differently. While windows are linked by a stone band similar to those used at the third addition, here the stone is flush with the brick. Vertical bands of stone are aligned with one side of the windows to create an asymmetrical composition.

Wood windows on the first addition match those of the original building.

Wood windows at the original building and first addition are similar to those seen at the Health Professions Building and are composed of pairs of double-hung, two-over-two units with transoms.

Stone trim joins almost square windows into horizontal bands at the second addition.

At the third addition, single, fixed windows are constructed of dark frames and glass.

A cantilevered flat concrete roof protects the front doors.
Conditions

Exposed rebar

At the concrete base of the original structure, rebar is exposed where concrete has spalled.

At the second addition on the south side, the concrete canopy is showing signs of deterioration from water.

Edges are covered in efflorescence and concrete is spalling on the underside.

Windows need paint and are deteriorating.

Stone spalling at entry

Above the entry door at the original structure, the stone base sitting on the concrete foundation wall is broken.

Stucco

At the first addition, stucco is delaminating from the face of the concrete foundation.

Stone-base damage

At the third addition, a large piece of stone has spalled away from the top of the stone base.
The main floor of the hotel bows out on the north and south to house meeting rooms and restaurant space. The subtle curve contrasts with the rectilinear hotel block above.

The elevator lobby tower is identified by a rounded brick volume.

On the face of the curved, one-story portion of the hotel, large buttresses with battered sides visually support the cornice.

The base of the structure is veneered in Briar Hill sandstone. In shades of brown, tan and orange, this stone is the same as used by Hargreaves at the entrance pylons.

The six floors above the sandstone base are veneered in red brick.
Oxide halos
Wherever metal is attached to sandstone, a halo of oxide has formed. Note this particularly at lighting and reverse channel, pin-attached letters.

Dining plaza
Awnings can be rolled out and doors opened to allow the large plaza on the south side of the building to be used for outdoor dining.

Lighting
The structure is lit with white sconces and pylons designed in a streamlined look similar to that sold by Poulsen Lighting.

Conditions

Biological growth at stone sills and belt course
The porous stone appears to be holding moisture. Biological growth, significant for the age of the building, is found on all sides of the building.

Oxide halos
Wherever metal is attached to sandstone, a halo of oxide has formed. Note this particularly at lighting and reverse channel, pin-attached letters.

At the face of the planter over the garage entry, moisture has discolored the stone.

UC symbol
Small stone squares are inset in the brick and contain a stylized monogram of the university. Guardrails also use the stylized university monogram as decorative details.
Skateboard damage

The edge of the planters has been scarred by skateboarders. Sealant has pulled loose.

Standing water

An emergency egress walkway runs behind the raised planter over the garage entry. Water is trapped here and standing.
Operated by Marriott, the Kingsgate Conference Center hosts University of Cincinnati events. Vontz Center is pictured in the background.
As the site steps down to the north, the Woodside Drive parking garage forms the base of the building. Constructed as a whole, the volume of the garage contributes to the scale and mass of the structure.

Library Square
The library forms the north side of Library Square facing Rhodes Hall, Zimmer Auditorium, and the Engineering Research Center. Paving patterns and lighted pylons decorate the square.

Horizontal emphasis
The use of flat roofs, long dark horizontal window bands, and the concrete balcony give the building a decidedly horizontal emphasis.

Roof cantilevers
Using the structural system to provide sculptural relief to the large building, the roof cantilevers at windows create another horizontal plane.
<table>
<thead>
<tr>
<th>Glass corner</th>
<th>Entry</th>
<th>Coffered structure</th>
<th>Concrete bridge</th>
</tr>
</thead>
<tbody>
<tr>
<td>At the corner facing southeast, the corner has been cut back in a zigzag. The faces of the stepped planes are completely glazed.</td>
<td>The building entrance is located in deep shade underneath a stepped recess. A cast concrete balcony runs the length of the entry recess.</td>
<td>Similar to the Geology/Physics building, the coffered concrete floor/ceiling structure is exposed at overhangs. The deep coffers are characteristic of this style.</td>
<td>Connecting the library to the adjacent Rieveschl Hall, the bridge is covered with a half-round Plexiglas cover.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Brick</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>In a departure from the red brick so prevalent on campus and also characteristic of the city, this structure is finished in brown brick of a uniform color. In detailing the masonry veneer, the architects used stacked soldier courses to accentuate the cornice and other features of the structure.</td>
<td>Exposed sprinkler piping in the garage is rusting.</td>
</tr>
</tbody>
</table>
A small plaza is located just in front of the library entrance. Cast-concrete seats, in a mushroom shape, are scattered beneath trees.

This structure is a simple box with minimal articulation. The walls are flat planes of monochromatic bricks.

Windows take the form of long, dark, horizontal bands with dark frames. These windows are the only decorative feature on the face of the structure.
<table>
<thead>
<tr>
<th>Design</th>
<th>Brown brick</th>
<th>Conditions</th>
<th>Sealant Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prominently located at the north end of Campus Green, Lindner Hall is constructed of a light-brown, uniformly colored brick veneer. This material is in contrast to the red brick that covers most of the historic campus buildings.</td>
<td>Sealant has failed at various expansion joints, leaving them open to the elements.</td>
<td>The dark sealant used to install windows is chalking and water is washing the dark color down the face of the building.</td>
<td></td>
</tr>
</tbody>
</table>
The building is located in found space in a void between the Nippert Stadium and Fifth Third Arena and serves as a backdrop for the west side of the bleachers. The close relationship between the grandstand and the white curved building accentuates the architectural diversity.

In contrast to other rectilinear or geometric shapes found in more traditional campus buildings, the Lindner Center takes an organic form, sort of a stylized sock, resulting in curvilinear, undulating walls. This strong geometry is not a response to a desired function but rather a sculptural expression.

The prominent dark triangular windows express the precast structural system. To create the organic form, the architect chose precast concrete. The system makes deep recesses at windows possible and gives a substantial feeling to the otherwise playful structure.
Full-height atrium

The interior features a full-height atrium with a continuous surrounding balcony. Balcony guardrails are clear glass with a single rail on top, further emphasizing the sinuous horizontal lines. The soaring vertical space draws the occupant’s eye upward.

Occupied spaces are located around the perimeter of the building and are connected by the linear balcony walkways. The single-loaded “corridor” is an organizing feature.

A continuous stair with landings at each floor begins at one end of the atrium and continues in a straight line to the top floor. This bright-red stair with glass guards becomes a sculpture within a sculpture and dominates the atrium.

Red and Black color scheme

The walls of the first-floor lobby are covered in displays that chronicle the history of athletics at the university as well as the performances of various sports. A strong red-and-black color scheme reflecting the school colors make a strong statement in the otherwise neutral space.
The former General Hospital Nurses’ Home was added to the National Register for its association with the history of medicine in Cincinnati and as an example of the work of Cincinnati architects Samuel Hannaford and Sons. During the first decades of the twentieth century, the firm was responsible for the design of many area public and institutional buildings, with a specialization in hospitals. The Cincinnati General Hospital complex was completed in 1915; the 1914 Nurses’ Residence is the best-preserved of the original eighteen buildings. Renamed Logan Hall in 1954, it occupies an important role in Cincinnati’s medical history as the physical embodiment of an unbroken line of progressive nurses’ training programs that date from the founding of a training school in 1889 through several successor organizations to creation of an autonomous College of Nursing and Health at the University of Cincinnati in 1938. Logan Hall is associated with three progressive movements: hospital care, public health, and women’s history. When Cincinnati General Hospital moved from downtown to its new campus in the university area in 1914, the Nurses’ Home became a haven as well as a training ground for aspiring nurses. During the limited hours when the women were not in class or working at the hospital, the dormitory served as their primary outlet for dining, social, and recreational needs. Miss Laura Logan, a pioneer in curriculum reform, instituted courses and fieldwork in public health during her administration as director of the School of Nursing and Health from 1914 through 1925, leading to a stronger social presence of nurses in the community, and setting the tone for medical achievement among women. The National Register nomination was prepared by Bruce E. Goetzman, AIA. The property is owned by the City of Cincinnati. From Ohio Historic Preservation Office website.

The U-shaped building is mainly constructed of a dark-red brick. Stone banding and other details contrast with the dark-red walls. The interior has been renovated, but many of the original details remain.
The building massing on the east side is symmetrical with a central main block rising one story above the two flanking wings. The wings project slightly in from the main block. At the first floor, heavy stone bands wrap around the building to create a rusticated base. At the top band, above the windows, a keystone is centered at each opening.

Windows are paired sets of three-over-one, double-hung, and are separated by a wide wood mullion. The openings are constructed with a brick jack arch and stone keystone at the head. At the top floor, a rectangular band of raised brick forms a panel between each window. At the corners of each rectangle, a square piece of stone is set. These stone accents create a lively pattern at the upper floor.

The front loggia provides a deep shady space on the east façade. Here, the piers are constructed of brick with the rusticated stone banding pattern. Similar in form to the entrance loggia on east façade, an open terrace at the west façade on the main floor is supported by a loggia on the ground floor. The loggia is finished in stucco.

Stone spandrel panels decorated with bas-relief garlands are set below some windows.
The building takes advantage of the natural grade. On the east, the entrance is on the main floor which is set just a few steps above grade. On the west, the ground floor is completely above grade.

The ground floor appears to be constructed of concrete with a stucco coating.

Decorative wrought iron is found at balconies on the east façade and along the terrace on the west.

Heavy light fixtures at the front door are in the Arts and Crafts style. Gridded lantern baskets hang from wrought iron brackets.

Original paired wood entrance doors with single lights remain as well as a second pair at the inside vestibule wall. Each frame includes a multi-light transom above.

On the interior, a large lobby space features a coffered ceiling supported by heavy piers. Classical plaster moldings are found within coffers and at the top of columns. The west half of the lobby has been separated by a wall to form office space. The wall does not run to the ceiling, allowing the coffers to be visible.

At the hallways running north and south from the central lobby, simple oak frames with operable transoms remain. In some locations, original doors with lights and panels are in place, while at other locations, the doors have been removed.
Logan Hall

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Stucco cracks</th>
<th>Sealant color stands out</th>
<th>Open joints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stucco cracks</td>
<td>The stucco covering the ground floor is cracking and detaching from the concrete substrate.</td>
<td>White sealant has been used to repair joints in the brick as well as the stucco. The light color of the stucco draws attention to the repairs.</td>
<td>Mortar loss has resulted in open joints in the brick and at the stairs.</td>
</tr>
<tr>
<td>A vertical crack in the stucco runs up the ground-floor base. This crack should be investigated.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stone condition</th>
<th>Stone cracking/repair</th>
<th>Cornice moisture</th>
<th>Fixture replacement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stone is stained by both atmospheric soil and gypsum crust. Shown at right is an example from the entry pediment.</td>
<td>Cracks can be seen in stone in various locations. As in the example photograph, many areas have been repaired. Some have cracked again and should be examined for structural movement.</td>
<td>At the cornice on the east side, water is washing through and causing mortar loss. Efflorescence is visible around the area indicating that brick is being saturated by water.</td>
<td>At the front loggia, ceiling fixtures have been replaced using pendants with large semicircular bowls. These new fixtures are a sharp contrast to the original sconces. More appropriate fixtures could be found.</td>
</tr>
</tbody>
</table>
Appendix B

MainStreet Lecture Rooms

Morphosis, 2006

Adjacencies

The curved form and metal screen form one sculptural wall of MainStreet.

Large Arc

The building arcs around the side of the Campus Recreation Center. The second story is suspended over MainStreet and creates dark shade beneath.

The south end of the structure extends over the stadium and presents a flat, solid face.
MainStreet Lecture Rooms

Sculptural stair

A freestanding stair is located away from the face of the structure and sits to the side of MainStreet. The angular, rectilinear form contrasts with the gentle curve and cant of the wall beyond, contributing to the impression that the volume is suspended.

Metal screen

A corrugated, perforated metal shading screen provides a semi-transparent face to the building.

Curtain wall

The exterior wall of the lecture rooms behind the screen is formed by a curtain wall with dark glass and dark mullions. The wall is tilted out slightly.

Lighting pipe

A stainless-steel pipe arcs around the curve, providing another dynamic element to the sculpture. The pipe holds lighting that illuminates the screen at night.

Workmanship

Attachment details are celebrated.

Conditions

Birds are roosting in the structure that supports the perforated metal screen.
A terrace on one side is contrasted by a gently sloped green lawn on the other. The glass pavilion appears to hover above the lawn on a recessed concrete base.

The pavilion is located in a space created at the intersection of Calhoun and Siddall Halls. Low and horizontal, it contrasts the vertical towers that shelter it.
Marketpoint at Siddall Hall

Plaza

An outdoor plaza on the north side of the building is finished in the school colors—black and red. Hard surfaces, dark colors, and lack of vegetation make the plaza less inviting than it could be.

Metal ribs

Between the glass panes, metal ribs extend from the bottom of the glass to a point above the roof plane, creating a modern interpretation of gothic crenellation.

Dark glass

Floor-to-ceiling dark-glass panes surround the west, east, and north facades. The glass reflects the adjacent Memorial Hall.

Conditions

Connector

An enclosure has been constructed between Siddall Hall and the Marketpointe building. This connector and the adjacent retaining wall have created a concealed, inaccessible area to the south that presents safety concerns.

Conditions (cont.)

Rusted railings

Steel-pipe rails are rusting at the handicapped ramp added to the entrance steps.

Modification

A handicapped ramp has been added beside the stairs. While tucked in the corner, it requires two switchbacks.

Diagonal Cracking

At the intersection of brick planes, diagonal cracks have developed. Light-colored sealant has been used to close the crack.
McMicken Hall
Hake and Hake, 1948

Classical Revival

Setting

The large structure forms the focal point of two campus open spaces—McMicken Commons on the east and Clifton Arc on the west.

Providing a connection from the public Clifton Arc side to McMicken Commons is a large segmental-arched tunnel. The axial location provides a vista to the formal temple front of Tangeman University Center.

Tower

Dominating the campus, the tower at McMicken Hall is a strong Neo-Georgian form. The zinc cladding of the lantern and spire set a precedent for the extensive use of metal finishes found on the newest buildings on campus. The lower step of the tower is surrounded by a Chippendale-style balustrade, and corners of both steps are highlighted by large urns.

Façade Massing

The building is organized as a large central hall with pedimented pavilions at each end. The central hall features a pedimented bay in the center.
McMicken Hall

Gable Parapet

At the ends of the gable roof, the building wall extends to form a parapet, giving the structure a distinctive roofline.

Dormers

Small dormers are located along the bottom side of each roof plane above the central hall. Some dormers are fronted by windows, others by vents. The dormers add interest to the large roof planes.

Broken Apex Pediment

A broken pediment with window settled in, this appears at various locations on campus.

Pedimented Stone Entries

Handsome stone surrounds with broken-bed pediments provide access to the center hall section. Each surround contains a pair of doors with a semicircular transom above. Stone stairs lead to a landing at each door. At the wings, simpler surrounds are used.

Slate Gable Roof

A multicolored, slate, gabled roof tops the main hall and wings. The slate appears to be in reasonable condition. The scale of the slates and mottled color provide textural relief to the large roof plane.

Mick and Mack

A stone lion flanks each side of the arched entryway. Named Mick and Mack, they have become university icons. They are painted, presumably to conceal repairs to damage from vandals.

Conditions

Atmospheric staining and gypsum crust are evident at all stone trim and detailing.
Paint is peeling on the entrance doors and there is evidence that the doors are deteriorating, including rot and opening of joints in the stiles and rails.

White sealant has been used to replace mortar at various locations in the stone detailing.

On all sides of the structure, the cornice is stained from roof runoff. This could indicate blockage at internal gutters or in the gutter itself.

Decorative iron railings at stairs and landings are rusting and failing. Oxide jacking is displacing the handrail. Post bases are weakened.

Mortar at the joints in the prominent steps located at building entries has been allowed to disintegrate. The use of salts accelerates the destruction of the joints. With the joints open, water can enter the structure, freeze, and cause displacement. Open joints are visible at the sides of the landings and at other stone trim.

Large six-over-six windows have been replaced. The sight lines of the sashes and muntins are appropriate to the Neo-Georgian style.

At a corner, the stone base has cracked, indicating movement. Long masonry walls often exhibit these cracks when expansion joints are not adequate.

The use of salts to melt ice has resulted in deterioration to the bottom of the door surrounds.
University Gothic Residence Hall

The style of this building, while unique on the campus, is typical of many university buildings across the nation.

Massing

Using the tower and distinct wings, the main façade is asymmetrically composed. The front door is tucked to the side of the prominent tower, heightening the asymmetry.

Tower

The ell-shaped plan takes advantage of the topography. On the low side, a long, wide run of stairs leads to the entrance plaza, making the building tower above the pedestrians below. On the high side, a green lawn fills the space enclosed by the walls, creating a private park-like area.

Asymmetrically arranged on the front elevation, a large tower including gargoyles, a quatrefoil screen at the parapet and vertical windows dominate the composition. Decorative terra cotta draws attention to the tower.
Memorial Hall

Bays

Brick and terra cotta bays are located on the front and rear. The front bay includes grotesques at the top of the terra cotta.

Tudor Arches

The main building entry from each side is through a large Tudor arch.

Terra cotta

Highly figured terra cotta accents the tower and main entry of the building. Especially notable is the water table that includes stylized tanks, ships, cannons, planes, and other military symbols.

Terra Cotta (cont.)

Grotesques are located at the top of the terra cotta at the front bay.

Slate Roof

At the top of chimney stacks, terra cotta is been cast to give the impression of highly-decorated, clustered chimney pots.

Brick Bond

The prominent roof and dormer roofs are clad in mottled slate. The texture of this material contributes to the aged look of the structure.

The masons have created a hand-crafted feeling by varying brick bonding patterns. Common bond is used with a Flemish bond course every third course. Such creative bonding patterns are often found in English revival architecture.
Memorial Hall

Conditions
Additions

As part of the construction of the CCM building, an enclosed walkway with a long brick-paved walk on the roof connects to CCM. The bridge terminates at Memorial Hall with little regard for the architectural composition.

There appears to be an addition made to the south end of the structure. A stair has been fitted into a notch created in the masonry. The stair is glazed in a modern storefront system with strong vertical banding.

Dormers have been added at the front a back of the building. Some are small and seem appropriate to the architecture; others are large and detract from the roofline. The larger dormers are mostly located on the rear of the roof.

Terra Cotta

The terra cotta on the building has been painted. The paint is chalking on all sides of the building.

Terra Cotta (cont.)

A large crack is visible in the corner of one of the terra cotta door surrounds. Indicating movement and possible damage to a concealed header, the crack can allow water to enter the structure, freeze, and create further damage.

The terra cotta dogs that project from the corners of the tower as well as the birds lower on the window are held together with straps. Many other sculptural terra cotta elements have been repaired in a similar fashion.

A corner of the water table has been broken off.

New windows have been installed in the stone frames.

At the entry tower, vertical windows have been replaced with modern windows that include a glued-on diamond-patterned muntin. The large pattern and thick muntins are not typical of the era.

Window Replacement
Conditions (cont.)

<table>
<thead>
<tr>
<th>Mortar Joints</th>
<th>Open Joints</th>
<th>Biological Growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thick mortar joints, can be found on the front of the building. These appear to have been repointed, but they could have been a design decision. Further investigation is required.</td>
<td>Along the connection of the plaza paving to the front face of the brick, the expansion is open allowing water to enter. In one section, an attempt to repair the problem left a large bead of mastic visible.</td>
<td>Behind a downspout tucked into a corner, significant biological growth can be seen. It is possible that the back of the gutter has deteriorated or a seam has opened, allowing water to saturate the brick.</td>
</tr>
</tbody>
</table>
The surviving two buildings of the “Three Sisters” outline the edge of the Campus Green.

The building is set above the grade of the Campus Green to create an earthen podium. Large, wide runs of concrete stairs are centered on the building.

Morgens Hall is a duplicate of the adjacent Scioto Hall. A third structure, Sawyer Hall, has been demolished. As a part of a large composition, the two buildings reinforce one another but have been diminished by the loss of the third “Sister.” The high-rise residence buildings enjoy a bird’s-eye view of the Campus Green below.
Morgens Hall

<table>
<thead>
<tr>
<th>Colonnade</th>
<th>Balconies</th>
<th>Penthouse</th>
<th>Concrete Frame</th>
</tr>
</thead>
<tbody>
<tr>
<td>The first floor of the building is inset. At the front, a colonnade is formed. A folded roof canopy joins the building to Scioto Hall next door. This colonnaded walkway is not only a formal connection between the Sisters, but also serves as an activity area for the building tenants. A children’s play area is found off of the colonnade between the two structures.</td>
<td>Three bands of cantilevered balconies protrude from the face of the building, providing visual relief, shading, and a connection between the indoors and the outdoors.</td>
<td>A thin concrete canopy can be seen at the rooftop. It appears to be a shade structure.</td>
<td>The concrete structure of the building is exposed and treated as a decorative feature.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aluminum Windows</th>
<th>Mosaic Columns</th>
<th>Conditions</th>
<th>Painted Mosaic</th>
</tr>
</thead>
<tbody>
<tr>
<td>An aluminum curtain wall system, including operable awning windows and colored spandrels, sheaths the building. The rectilinear grid, material, and spandrel color are typical of the architectural style.</td>
<td>On the ground level, the first floor is set back and the mass of the building above is supported by large round columns. The columns are tiled in square mosaic tiles. The tiles have been painted but appear to be cream colored.</td>
<td>In some areas on the cantilevered balconies, reinforcing steel is exposed and rusting.</td>
<td>The mosaic tiles have been painted and the paint is failing. The tiles below appear to be a similar color. It is unclear why the tiles have been painted.</td>
</tr>
</tbody>
</table>
At the underside of the first floor, the ceiling tiles show staining from moisture. The tiles make it difficult to access the space above.

The concrete beam running across the bottom of the structure and sitting on top of the round columns is fractured. This crack could be the result of movement at this connection.
Faculty Center at Myers Alumni Center
Cellarius & Hilner 1969

Though constructed in the late 1960s, the structure pays homage to the Prairie-style designs of Frank Lloyd Wright. The use of brick and stucco, the detailing of the windows, and the low, horizontal lines all contribute to the style.

Myers Alumni Center
Glaser, Myers & Associates, 1988

Prairie style

Setting

This low-scaled building sits to one side of Campus Green. The building is very pedestrian-scaled and is experienced as a “pavilion in a park.”

The Alumni and Faculty Center buildings have been constructed in a “U” configuration. Inside the “U” is a courtyard protected behind a brick privacy wall.

A low-hipped Bermuda metal roof tops the structure. Large overhangs provide shade to windows that run up to the underside of the wide stucco soffit.
Appendix B

Myers Alumni Center
Faculty Center

Planters

The transition between the ground plane and the building is softened by the use of low planters with limestone caps.

Glazed Entry

The main entry to the Faculty Center is through a glazed wall into a two-story-high lobby space. The glazed opening is articulated with substantial wood mullions. The large glazed area reads as a dark void and draws the pedestrian to the front door.

Central-Courtyard Focus

The exterior walls of the building have relatively few windows. Major glazing has been oriented to the courtyard.

Outside the main gathering space in the faculty club, a large terrace overlooks the courtyard space. The terrace is edged with a low, white stucco wall topped by a simple, open pipe rail.

Brick

The structure is clad in red brick with random dark headers. The brick is laid in Flemish bond.

Entry Hardware

The aluminum entry doors and doors to the terrace feature narrow, streamlined panic hardware. The delicate frame and hardware allow a larger area of glazing than products available today.

Entrance

In contrast to the glazed opening of the adjacent Faculty Center, entrance to the Alumni Center is through an open brick pavilion.

Conditions

Efflorescence

The pavilion entry at the Alumni Center shows efflorescence on all exposed side.
A hard pointing mortar has been used to make repairs at the Faculty Center. The new mortar is lighter in color than the original.

The Faculty Center relies on large wood mullions to divide glazed areas. The paint on the wood here and in other exposures requires painting. There is some evidence of wood deterioration where paint has failed.

At various locations around the building, open joints are visible.

The color used to paint the exterior stucco appears too white for the style of architecture.

A ramp for wheelchair accessibility has been added to the north side of the structures. The ramp is straight-run and constructed of wood. As a result, the ramp becomes the focal point of the structure as viewed from Campus Green.

At exterior stairs, a large concentration of efflorescence can be seen adjacent to the steps. This is a sign that salts are being used to melt ice. The brick in this area is deteriorating.

The pipe rail at the Faculty Center does not meet current codes.

At the underside of the soffit, screens to protect a vent have been damaged, allowing access to the attic by squirrels and bugs. Light-fixture trims in this area also show evidence of light rust.
The location of the stadium in a depression at the center of campus creates visual connections between MainStreet and distant buildings on campus.

Beyond the grandstands, university buildings help define the stadium space. Dieterle, constructed on axis, formalizes the end of the stadium.

The CRC and Lindner Center close the north end of the space. The CRC presents a boxy, closed roof structure.
Press box

The press box leans out over the grandstands on the east side of the stadium.

Scoreboard

At the south side of the field, a recent scoreboard and support structure have been constructed. A pedestrian bridge connects the CRC to the new Lindner Center and Arena.

Bas-relief

A bas-relief sculpture in stone at the north end of the stadium commemorates Jimmy Nippert, for whom the stadium is named.

Red brick wall, 1912

Some remnants of the old wall surrounding the stadium remain.
The side facing away from the stadium is sheathed in a dark red brick with stone banding. Bands of saw-toothed brick provide relief to the upper band. This detailing is reminiscent of brick work at Dieterle. Large limestone panels clad the base of the structure.

Centered above the central entrance gate is a large round window set in a plane of stone.

The entry stair has been modified to create a landing and to provide for a handicapped ramp. At the front face of the flanking walls, the stone cap has been inscribed with the words “Theory” and “Practice.”
Field side

The side of the press box facing the field is constructed in a completely different language. This modernist front is executed in aluminum, and glass cantilevers over the seating. The curtain wall is articulated with aluminum frames.
Old Chemistry Building

Classic revival

Appendix B

The structure forms one side of Schneider Quad (formerly Baldwin Quad). It was the second building constructed on the quad.

The central, main-entrance portal is detailed as a temple with a pair of fluted columns and a flat entablature. The entry door takes up much of the space between the columns on the first floor. Three vertical windows fill the space below the entablature on the second floor.

The entry stair has been modified to create a landing and to provide for a handicapped ramp. At the front face of the flanking walls, the stone cap has been inscribed with the words “Theory” and “Practice.”
Cornice and Parapet

A heavy but simple terra-cotta cornice runs around the top of the building. A low brick parapet wall with shallow pediments at the end pavilions caps the cornice.

Belt Courses

Strong horizontal lines are created by terra-cotta belt courses at the water table, below the first-floor windows, above the second-floor windows, and above and below the third-floor windows. The terra cotta has vertical lines that simulate the grooves created by stone tools.

Decorative panels

Decorative terra-cotta panels are located just below the cornice above the third-floor windows and in the space between the second and third floors at the end pavilions.

Material Choice

This classical revival structure is typical of the other buildings on the quad in the use of red brick and terra-cotta detailing.

Fountain

A glazed tile fountain is located inside. The work appears to be by Rookwood Pottery and is covered with classical scientific iconography.

Conditions

Transformer

A green transformer box has been set in front of the building on the left side, near a secondary entrance door.
Repointing

Above the third floor, the parapet appears to have been repointed. The color of the mortar is lighter than that found immediately below the belt course.

Ramp

A large accessible ramp has been located on the right side of the main entry to the building. The location and scale overwhelm the historic façade and detract from the formality of the quad. The accessible ramp is failing. Significant cracking is visible on the vertical concrete stuccoed planes. The pipe-rails are rusting at their embedments and oxide jacking is contributing to movement in the concrete.

Open Joints

At the main entry, joints in the entablature have lost mortar. The open joints allow water to run through to stain the face of the structure. Gypsum crust and efflorescence are visible. Significant cracking has also occurred.

Terra cotta

At various locations around the building, the historic terra cotta is cracking. The image at the right shows significant damage at the right secondary entry portico. The coating on the terra cotta may have been installed to conceal crack repairs.

Terra cotta (cont.)

In what appears to be a location of a former downspout, the terra cotta was modified to allow the spout to pass through. The repair to the modification does not replicate the form, color, or texture of the terra cotta and should be replaced. Cracking can also be observed at the corner of the terra cotta.

Open joints at the terra cotta have allowed water to wash through, and in some areas, biological growth has occurred. In an effort to close the joints, it appears that a synthetic strip was placed over the joint in the terra cotta. This material has failed and is chalking. The chalk is also washing down the face of the building.

Replacement Windows

Original windows have been replaced. The new double-hung windows have sight lines that are appropriate to the period of construction.
The building is designed as a low, flat spreading structure. Bands of louvers, metal panels and windows emphasize the horizontality of the design.

A steep hill has been carved out to create a flat site for the structure. On the east side, the flat area is created by a low retaining wall. The resulting areaway separates the building from the grade and potential surface water penetration.

The main floor projects out from the structure above by a full bay. The roof of the projecting portion is visible to pedestrians and automobile passengers. The projecting area, as well as the roof, is covered with a membrane roof.

The areaway is surrounded by simple steel-pipe rails. The surface of the remaining entrance bridge shows evidence that the pipe rail extended along each side as well.
Bridge

The original entry to the structure appears to have faced west toward Vine Street. At the lower level, a deteriorating concrete bridge connects the building to grade over the areaway. Deteriorated concrete piers appear to have supported a bridge to the main floor. Other evidence of this entry has been removed.

New entrance

A new entrance has been created on the north side, facing University Hall.

Moveable solar screens

Folded metal louvers, a full floor in height, screen windows behind. The lovers are moveable by means of an attached bar.

Burgundy enamel baked on steel

To sheath walls, baked enamel panels are set in a regular frame. The panels are a dark burgundy in color.

Insulated panels

The most distinctive feature of the building is the stone-covered panels that sheath the structure and are also employed as shading fins. The panels are constructed of an insulated core with a metal face. Sharp-edged, white rocks are glued to the face.

Conditions - New entry added to the north

The removal of the original entry sequence and the construction of the new entry have changed the relationship of the pedestrian to the building.

Stone base painted grey

The stone base has been painted a battleship-gray color.

Exposed steel rusting

A steel structure supports the overhang at the main floor. The structure is exposed and exhibits significant rust. It appears that this area used to be enclosed with a soffit.
Conditions (cont.)

<table>
<thead>
<tr>
<th>Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rust stains</td>
<td>Rust is dripping off the exposed panels to stain the stone and pavement below.</td>
</tr>
<tr>
<td>Rocks falling off panels</td>
<td>The stones glued to panels are falling off.</td>
</tr>
<tr>
<td>Delaminating panel</td>
<td>One fin close to ground level is open, allowing inspection of the interior structure. The layers of this panel are delaminating.</td>
</tr>
<tr>
<td>Damaged panels</td>
<td>Holes are visible in panels.</td>
</tr>
<tr>
<td>Bird droppings on west</td>
<td>Birds are nesting in the steel structure and droppings are staining the painted metal panels.</td>
</tr>
</tbody>
</table>
Appendix B

Rhodes Hall
Baxter Hodell Donnelly & Preston, 1970

Precast and brick

The structure is connected to the ERC by means of a tower and pedestrian-way.

The north facade echoes the horizontality of Langsam Library across the plaza.

The photo above before ERC construction shows the verticality of the east facade.

The concrete structural grid is expressed on the plaza-side of the building. Between floor planes and columns, a glass curtain wall forms the side of the building facing Library Square.

The textured concrete catches dirt which then washes down the face during rain to stain the concrete.

Low, horizontal aspect Grid expressed Conditions

Staining

Cornice

The building utilizes a simple formal vocabulary. A textured-concrete cornice represents the only ornamental gesture.
Rieveschl Hall, Brodie Science Center

Brutalist

The façade is broken into vertical brick towers with window bands between. Entries are not easily discerned.

On the north side of the building, a plaza was constructed above Clifton Court Garage. The detailing of walls and ramps matches Crosley Tower.

A service drive runs below plaza between Rieveschl Hall and Zimmer Auditorium. The street is dark and uninviting.

A bridge over a service drive connects the building to Zimmer Auditorium and the Zimmer Roof Garden. The street is dark and not inviting to pedestrian traffic.
Crenellations

Large crenellations, similar in form to Crosley Tower, dominate the roof line. The crenellations were originally concrete and later covered in sheet metal.

Dark windows

Tinted glass and frames contribute to the overall dark appearance of the structure.

Banding

Dark metal bands—previously exposed concrete—appear to be the extension of floor slabs.

Dark brick

The building is clad in a dark-brown brick, atypical for the campus.

Conditions

Joint failure

Just below the hopper at the east side of the building, a diagonal crack in brick joints can be seen. A horizontal joint just above this area has also opened.

Alteration

Attachment points for some type of screens can be seen at the mullions above the entries. The screens appear to have been removed.

Sealant color

Mortar joints have been repaired using sealant. The sealant is much lighter than the mortar.
Sander Dining Hall

Woodie Garber, 1971

Brick, steel, plate glass, white rock panels

Metal cladding with a vertical pattern in a dark-bronze color has been used to clad horizontal bands.

Connection to surroundings

Glazed building surfaces, shifted building masses, and large overhangs blur interior and exterior space.

Building massing

In contrast to symmetrical massing on the north façade, other building faces are composed of projecting box forms and voids. Building materials are also arranged to emphasize individual masses.
Sander Dining Hall

Stone-panel cladding

To sheath the wall planes, the architect has used large, flat panels that are covered in a white stone. The stones are sharp and have a reflective quality.

Conditions

<table>
<thead>
<tr>
<th>Stone panels</th>
<th>Penthouse</th>
<th>Satellite antennae</th>
</tr>
</thead>
<tbody>
<tr>
<td>The stone panels used to clad the building are failing. The sharp-edged stones appear to be embedded in mastic. In some areas, the mastic is completely exposed. Stones have been swept into adjacent soil areas and are forming a mulch cover.</td>
<td>A penthouse mechanical space appears to have been re-clad in a dark metal. The material does not match other metal panels used on the structure.</td>
<td>Satellite dishes and antennas have been added to the roof of the structure.</td>
</tr>
</tbody>
</table>

Open Joints

The sealant between metal panels has failed. The resulting open joints allow water to enter the structure.

Discoloration

The ribbed-steel cladding panels are discolored.
Schneider and Turner Halls

Brick base with vertical metal standing-seam, interlocking panels in recesses

Turner hall is constructed in brick with a vertical standing-seam metal shed roof. The roof material “wraps” down onto the wall.

The building has been located at a setback that matches the University Avenue Garage and Daniels Hall. The result is a large green lawn separating the dormitory from the street. A row of trees lines the street. Across the street is a Victorian-scaled streetwall.

Along Jefferson Avenue, Turner Hall presents a flat, rectilinear masonry facade with regular windows. On the campus side, the building is broken into smaller planes, and smaller-scale components address the more active courtyard. Metal and glass are the predominant materials at the courtyard and windows are larger.

Rather than being constructed as one or two large structures, the program has been broken down into smaller buildings joined by ground-level connectors.
Schneider and Turner Halls

Glazed, shed-roofed forms

Inside the courtyard, one-story rooms with glass curtains are topped with shed roofs. These smaller components help break down the mass of the dormitory.

Glazed corners

Staircases are located at the corners of the structure. Sheathed in large open planes of glass, the stairs are open to exterior view.

Transparency

Vistas through glass into common areas of the building.

Windows

Three single-paneled windows are ganged together to create an asymmetrical window configuration.

Brick detailing

In contrast to the massive load-bearing brick used at historic buildings, brick here is clearly expressed as a veneer and appears to float or hang above the exposed concrete foundation.

PVC Column wraps

At some locations, steel-pipe columns are clad with PVC wraps.

Conditions

Design

Chalking at metal panels.

Moisture

Eflorescence blooms.
The roof plane overhangs the structure below on all sides. At the field side, the overhang cantilevers a large distance and supports the upper edge of the backstop net. The roof form is an inverted triangle, presumably the shape of the supporting trusses. The roof is clad in white sheet metal.

At the top of the building, a narrow band of windows separates the solid mass from the roof structure and makes the roof appear to float.

The side facing the field is clad in a curtain wall to allow full views of the play. The wall is curved in response to the shape of the field.
Large, squat white columns support the structure on field side.

The large volume of the building is clad in horizontal gray metal and recalls recently constructed buildings along Main Street. The darker, more solid form creates a visual base for the more sculptural, dynamic roof.

At the underside of the roof overhang, staining is visible along joints in the metal cladding.

The sheet-metal cladding at the large curve of the roof is oil canning.

Evening game
Cincinnati Bearcats, 2004
The surviving two buildings of the "Three Sisters" outline the edge of the Campus Green. Morgens Hall is a duplicate of the adjacent Scioto Hall. A third structure, Sawyer Hall, has been demolished. As a part of a large composition, the two buildings reinforce one another but have been diminished by the loss of the third "Sister." The high-rise residence buildings enjoy a bird's-eye view of the Campus Green below. The first floor of the building is inset. At the front, a colonnade is formed. This colonnaded walkway is not only a formal connection between the Sisters, but also serves as an activity area for the building tenants.
Scioto Hall

<table>
<thead>
<tr>
<th>Columns</th>
<th>Rear canopy</th>
<th>Balconies</th>
<th>Penthouse</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A folded roof canopy joins the building to Scioto Hall next door. Across the front of the building and connecting to the adjacent building is a covered walkway. A folded roof form, typical of the architectural style, is supported by delicate steel-pipe columns.</td>
<td>Three bands of cantilevered balconies protrude from the face of the building, providing visual relief, shading, and a connection between the indoor and outdoor.</td>
<td>A thin concrete canopy can be seen at the rooftop. It appears to be a shade structure.</td>
</tr>
<tr>
<td></td>
<td>At the rear of the building, thin concrete canopies are supported by delicate steel-pipe columns.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>An aluminum curtain-wall system including operable awning windows and colored spandrels sheaths the building. The rectilinear grid, material, and spandrel color are typical of the architectural style.</td>
<td></td>
<td>A scalloped metal-panel system has been used as a screen between unit balconies. The material is typical of this style.</td>
</tr>
<tr>
<td></td>
<td>On the ground level, the first floor is set back and the mass of the building above is supported by large round columns. The columns are tiled in square mosaic tiles. The tiles have been painted but appear to be cream colored.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Appendix B 138
At the canopies on the rear of the building, concrete block walls have been erected to create what is presumed to be mechanical space.

At the end of each floor/roof slab, the brick joints have failed. It appears that the joints have been closed with sealant.

Some of the splined ceiling panels have been removed and systems are exposed under the first-floor overhang.

The mosaic tiles have been painted and the paint is failing. The tiles below appear to be a similar color. It is unclear why the tiles have been painted.
Siddall Hall
Tweddle, Wheeler, Strickland, and Beumer, 1964

International Style

This structure is similar to Calhoun Hall. Together with the Marketplace structure, the relationship of these three structures was clearly intentional and creates a cluster.

In contrast to the mostly mid-rise earlier structures on campus, this International Style tower reflects a trend in architecture. Located at a street edge of campus, the tower helps define the campus border.

The curtain-wall system with ribs begins at the third floor. The first two floors are slightly recessed behind the major wall plane and dark glazing and framing contribute to the appearance of a base.

Setting	High-rise	Two-story base

Appendix B
The large curtain-wall faces of the structure are composed of dark window frames with dark interstitial panels. Separated by aluminum ribs, the windows recede and emphasize the verticality of the ribs.

The ends of the building are executed in brick, making the larger planes of glass appear even lighter and more transparent.

The dark metal screens are being replaced with new screens of a different color. The random locations of the replacement screens detract from the intended pattern of the curtain wall and rib hierarchy.

Parapet cap coming off wall.

At the connection between the large retaining wall and the paving, concrete is spalling and steel reinforcing is exposed. The use of salts in this area contributes to the deterioration of both concrete and steel. Further oxide jacking can be expected at the exposed steel.
It should be noted that the Steger Student Life Center is the first LEED-certified building on campus.

Addressing the curve of MainStreet and the CRC on the other side, this structure is gently arced. On the Mews side, the curve protects the green space and seating areas; on the street side, the curve draws the pedestrian into the active space.

At the far east end of the structure, the upper floors jut out over MainStreet to create a prow looking toward Campus Green. The acute corner, open balcony, and glazed corner help humanize the mass of the end of the structure.

The building is designed as a long, thin structure. In some areas, pedestrians can look through retail spaces to the Mews on the other side. This shallow depth offers excellent opportunities for daylighting the interior spaces.
Roofline
The structure is finished with a flat roof, but the line of the roof is broken by projecting masses.

Steps
To accommodate the grade change from the top to bottom along MainStreet, steps have been placed along the south side to provide transition to the first-floor building spaces. On the north side, short runs of stairs connect the various terraces of the Mews.

Colonnade
Along MainStreet, the first floor is recessed and upper floors are supported by brick piers to create a protected, shady colonnade for pedestrians.

Bridges
An open bridge connects across the Mews to Swift Hall at the Baldwin Quad. A glazed roof canopy spans the space and protects the connectors below. Materials from the Steger Student Life Center have been applied to the face of Swift and visually connect the two structures.

Angled bays
Along the south façade, angled bays protrude from the face of the smooth curve.

Linear windows
Windows are arranged in linear bands that accentuate the low, horizontal curve of the building. Solar screens are attached above the windows on the south side.

Brick base
The first floor of the structure is clad in a red brick similar to the predominant brick color used on campus.
The upper floors are sheathed in a dark, horizontal, metal cladding. The joints in the cladding are staggered on an irregular basis, creating a random pattern.
Joseph A. Steger Student Life Center

The glazed roof canopy connects Steger Student Life Center (right) and Swift Hall (left).
Swift Hall
Harry Hake, 1925
Classical Revival – simplified

This structure forms one side of Baldwin Quad. It was the final building added to the quad.

Swift is connected to the Steger Student Life Center with bridges. The plaza formed between the two buildings is covered by a translucent roof.

Swift Hall is a simplified mirror of the Old Chemistry Building on the other side of Baldwin Quad.
Swift Hall

<table>
<thead>
<tr>
<th>Façade composition</th>
<th>Cornice and parapet</th>
<th>Material choice</th>
<th>Tiled lobby</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The building is composed of a central block with projecting wings. The central block features an entry portico with fluted columns executed in terra cotta.</td>
<td>A heavy, but simple terra-cotta cornice runs around the top of the building. A low brick parapet wall with shallow pediments at the end pavilions caps the cornice.</td>
<td>This classical revival structure is typical of the other buildings on the quad in the use of red brick and terra-cotta detailing.</td>
<td>An elaborate tiled entry lobby remains at the central entrance. The remainder of the interior has been completely renovated.</td>
</tr>
</tbody>
</table>

Conditions

<table>
<thead>
<tr>
<th>Repointing</th>
<th>Terra-cotta condition</th>
<th>Cornice repair</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mortar joints have been repointed heavily. Mortar extends onto the face of the bricks.</td>
<td>Like the other buildings at the Baldwin Quad, the terra cotta here has been painted. Evidence of staining and repair can be seen on all sides of the building. The paint used to coat the terra cotta is chalking and washing down the face of the building.</td>
<td>Dark mortar or sealant has been used to repoint the terra cotta. The dark color draws attention to the joints.</td>
</tr>
<tr>
<td>Around the perimeter of the building, the cornice is being held in place with metal plates and bolts.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix B

Tangeman University Center, Donald Core

Georgian Revival with modern addition
The principal façade features eight-over-eight, double-hung steel windows. The windows at the new construction feature a clear-anodized, horizontal rectangular window grid. These are especially noticeable at Bearcat Plaza and at building entrances.

The interior is simple and clean. Floors are a checkered terrazzo pattern and walls are finished in white drywall.

Originally built in 1924, TUC has undergone an addition by Harry Hake in 1937 and a reconstruction by Gwathmey & Seigel in association with GBBN in 2004.

Axes

The porticos of McMicken Hall and this structure are aligned. The four-column stone portico is the major focus of the facade of the original Tangeman that remains exposed.

Multi-level entrance

The curved facades of Tangeman are complemented by the opposite wall of the Steger Student Life Center and define the MainStreet terminus at McMicken Commons.

To address the grade changes around the building, major entrances provide access to different floors. Large crowds of students can be handled by distributing the entries to multiple floors.
Appendix B

Juxtaposition of old and new

Brick with stone panels, a water table, a belt course and a cornice define the original building which was constructed in the Georgian Revival style similar to McMicken Hall across the Commons. The original structure was topped with a large gabled roof clad in slate. Brick parapets and chimneys define the gable ends.

In the renovation, a large skylight was constructed around the central tower. Substantial new additions have been made. A circular structure surrounds all but the principal façade of the original structure and another connected structure was added to the south.

The original structure was crowned with a stepped clock tower clad in zinc. Zinc cladding is detailed in two different methods. The large planes of the barrel that surround the original structure are sheathed with diamond-shaped, interlocking shingles. As a contrast, other planes are covered with horizontal bands accentuated by drip edges at alternate courses. The diamond pattern recalls the stone diamonds used to detail the original structure.

Form

The faces of the building are a study in projecting and receding planes. Overhangs create shades and at the ground level the designer has used more pedestrian-scaled elements in glass.

Interior atrium

While many walls of the new construction are solid, a large curtain-wall window faces the stadium.

The support structure for the clock tower houses a major interior stair. The skylight in the roof provides natural light to the building atrium.

Conditions

Stone staining

At the cornice of the historic structure, water has flowed over the internal gutter to stain the stone.
Tangeman University Center

At the monumental columns of the entrance portico, dark areas of stone may indicate rising damp. The detailing of the implied base may also hold water against the column.

Conditions

Rising damp

Juxtaposition of old and new is apparent with the clock tower and atrium skylight, and the reflection of the “Christopher Wren” cupola on McMicken Hall in the glass curtain wall of the south wing of TUC.
Tangeman University Center opens onto Main-Street and Bearcat Plaza on the north side.

Conditions

Stone patching

To repair damage at one of the historic pilasters, a stone patch was installed. The patch color does not blend with the original stone.

Limestone condition

At one window sill, limestone has been damaged.
On the volume that houses the Annie Laws Auditorium, engaged columns support an entablature to create a colonnade that organizes the façade. The windows located between columns at the engaged colonnade open into the former double-high auditorium inside. These large windows have round arch tops.

The strong horizontal cornices conceal the form of the roof. A large volume extends above the building. On each side there is a small, round, operable window.

At the main entrance doors, an architrave denotes visual importance.

Teacher’s College

Garber & Woodward 1930

Classical Revival, Deco-classical building.

Teachers College is connected to Dyer Hall by a large connector. Teachers College is the oldest of the three structures.
Stone detailing

Vertical rows of stone blocks give the impression of pilasters at the end of the façade. Centered above each row, in the upper store, is a stone disc carved with stylized figures.

Windows

Existing windows are steel, double-hung, six-over-six. At the main floor, some windows have a three-part transom. This composition creates an elongated window on the main floor.

Ironwork

Decorative iron vent covers are located at various locations on the facades.

Classical lobby

The entrance lobby has classical molding at the cornice and columns in antis at the opening to the corridor.

Classical lobby (cont.)

The ceiling has an elliptical vault. The floor is a black-and-white checkerboard of terrazzo.

Leaded glass

At transoms over the entrance doors and in the fanlight and sidelights at the door between the lobby and the corridor, geometric leaded glass was used. The fanlight and sidelights give the door a residential feeling.

Sconces

At the interior, white plaster sconces and decorative panels in an art nouveau style are found in the lobby.

Conditions

Stone damage

A large piece of the torus on two column bases has broken off. Damage to other column bases was also observed.
Conditions (cont.)

<table>
<thead>
<tr>
<th>Stone staining</th>
<th>Open joints</th>
<th>Air conditioners</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stone, especially at hoods and entablatures, is stained. The stains are the result of both atmospheric soil and gypsum crust.</td>
<td>Mortar loss has occurred on all sides of the structure. Open joints allow water to enter the structure.</td>
<td>Window units are found on all sides of the structure. Condensation has dripped from the units and stained the building.</td>
<td>The former double-height auditorium space has been cut in half by the insertion of a dropped ceiling.</td>
</tr>
</tbody>
</table>

Rust

Painted finishes at decorative wrought iron balconies have failed. Exposure of the iron to weather has resulted in rust.
The concrete structure of the building is exposed. The ends of the parking decks run the full length of the building and emphasize the horizontal orientation of the structure.

Brick towers contain the stairs and elevators. The outside of the stair towers are open and the form of the stairs is visible.

Chain-link fencing is used to form guardrails along the sides of the parking platforms.
University Avenue Garage

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Guardrails</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposed steel</td>
<td>Posts and rails are bent.</td>
</tr>
</tbody>
</table>

At the concrete structural piers, reinforcing steel is exposed and rusting.
The University Pavilion terminates views from University Plaza and McMicken Commons.

Setting

The building is conceived as a large cubic volume. On the south side, long bands of windows give horizontality to the structure.

Interpenetrating volumes

From the north side, the building appears as a large glass volume embraced by a limestone volume.
University Pavilion

Roof overhang

A horizontal roof overhang surrounds the building on all sides, creating a cornice effect.

A glass penthouse tops the structure. At the commons side, a terrace runs the length of the building.

Entrances

To call attention to building entries, red metal panels are inset into the wall above each set of major doors. Horizontal flat canopies supported by stainless-steel braces protect the landings outside each entry.

Glazing

The curtain wall and other glazing at the building are a bluish green glass set in metal frames finished in baked Kynar.

Shading

Sun screens protect horizontal window bands on the south façade.

Projections

Offices in a glass volume project from the flat stone surface.

Stone detailing

In the stone volume, punched windows punctuate the smooth façade. Sealant joints between the stone panels are treated as reveals. The stone is dressed in a honed finish.

Base

Below the stone, a stainless-steel base separates the building from the grade.

Terrazzo/granite

A paving pattern on the interior is executed in terrazzo. The pattern continues through to the exterior plaza where the pattern is executed in granite.
The exterior stair—that leads from the plaza to the commons—is reflected into the interior. Pedestrians inside and outside move parallel, on either side of a glass wall.

At doors, handrails, and other hardware, the architects have chosen minimal slick stainless steel as the material.

At the open space above the lobby, an aluminum curtain wall forms the face of offices. It is screened with horizontal maple slats that bow out into the lobby space.
University Pavilion
The base of the structure is veneered in Briar Hill sandstone in shades of brown, tan and orange. This stone is the same as used by Hargreaves at the entrance pylons.

The six floors above the sandstone base are veneered in red brick.

The entry sequence brings pedestrians in from the street towards the University Commons.
University Hall

Lighting

The structure is lit with white sconces and pylons designed in a streamlined look similar to that sold by Poulsen Lighting.

UC Symbol

Small stone squares are inset in the brick and contain a stylized monogram of the university.

Masonry details

Guardrails also use the stylized university monogram as decorative details.

Brick pilasters run the height of the building, giving the windows depth and adding dimension to the façade.

Conditions

- **Biological growth at stone sills and belt course**

The porous stone appears to be holding moisture. Biological growth, significant for the age of the building, is found on all sides of the building.

- **Oxide halos at metal attachment to sandstone**

Wherever metal is attached to sandstone, a halo of oxide has formed. Note this particularly at lighting and reverse channel, pin-attached letters.
Unlike the majority of other campus buildings which are horizontal in orientation, this structure is a formal, tall cube. The cube sits in a plane of grass and is accessed by a large, new set of monumental granite steps. The structure aligns with the front of McMicken Hall and strengthens the original academic ridge.

The monumental entry to the piano nobile is a distyle in antis portico. This strong temple front features ionic columns supporting a pediment with decoration and is crowned by an anthemion.

Simple one-over-one double-hung windows are found on all sides of the structure. In some locations, large stone hoods protect the windows. At the rear, the pattern of windows is a typical arrangement for daylighting library stacks.
Van Wormer is the only historic structure constructed completely in stone. Inherent qualities of the stone, a warm brown-gray, have resulted in the need for numerous repairs.

As part of the recent renovation, the dome, long missing from the structure, was replaced with a modern interpretation. The new dome is a glass structure that provides daylight to the restored central lobby.

Previous renovations to the structure eliminated the open space of the central rotunda in favor of offices. The recent renovation reopened the central space. Especially notable here is decorative plaster work and the gallery railing.

Van Wormer Library

In the recent renovation, the grade around the structure was changed to allow for an accessible entrance and to correct moisture flow. At this time, the stone base was veneered with gray granite.

On all sides of the structure, various campaigns of stone repair can be observed. The color of the stone varies significantly, making the matching of patches difficult.

It is assumed that the recent renovation did not address movement in the stone. Crack monitors remain on the exterior of the building.

At various locations, but most noticeably at the east façade, stones have been replaced. At the area of replacement surrounding the stack windows, significant quarry sap is visible.

Stone

Dome

Rotunda

Vestibule

Conditions

Granite base

Stone condition

Appendix B 166
During the recent renovation, the original stairs were replaced with new granite steps and flanking walls as well as new handrails.

The recent renovation made the first floor accessible. The grade has been altered, windows replaced, and a new accessible entrance added on the north side.
Van Wormer Library
The building is elevated from University Commons to the west. A stepped amphitheater serves as a visual base to the structure.

The cruciform plan was chosen to separate office and teaching space from the laboratories. The blocks that form the legs of the cross meet at the apex where they are connected by a lobby space. Glazed volumes join the legs and the crossing.

The masses that make up the four legs of the cross plan twist up from the ground plane, giving a sense of movement and dynamism to the form. The blocks appear almost like gelatin in a bowl.

Photograph courtesy of Robert Flischel.
Irregularly shaped windows curve to correspond to the curved faces of the brick exterior.

Windows protrude from the brick plane, their faces covered with a glazed curtain-wall system. The glass extends beyond the sides of the window frames. The glazing frame system creates a grid over the face of each window.

To conceal the edge of the brick panel system, the architect has used galvanized-steel angles at the corners.

The building is clad in pink brick formed into panels and attached to the structure. The joints between the panels are made visible by a recessed sealant joint between panels.

The building is separated from the lawn area by a mow strip of white gravel.

Galvanized-pipe rails on the exterior are detailed with a copper end cap.

The glazing that connects the legs to the crossing allows daylight to flood the atrium space above the lobby.

Offices line the perimeter of the office wings to take advantage of natural light. Inside, large boxes covered with plywood form additional office space. Bright lighting is placed on top of the plywood boxes to illuminate the ceilings and accentuate the volumes created.
Freestanding stairs

Sculptural stairs connect the interior floors.

Auditorium

On the ground floor, an auditorium occupies one of the legs of the cross form. The interior of the auditorium is simple with exposed systems and large planes of plywood forming the sidewalls.

Bathrooms

Bathrooms are tiled in a dynamic pattern, echoing the tilted and active form of the exterior.

Lighting sources hidden

Where gypsum-board ceilings meet plywood-clad elevator and service cores, recessed lighting separates the connection of planes and washes down the face of the plywood.

Furnishings

Signature Gehry bentwood chairs are found in the lobby areas.

Plywood, drywall, and slate floors

Interior materials are simple and include plywood, drywall, and slate floors.

Stainless steel doors

In contrast to the warm materials of slate and wood, the doors to the laboratory spaces are clinical stainless steel.
The brick panels are cracking. Diagonal cracks are visible at the upper corners of the building.

Failed sealant

Sealant between panels has failed, allowing water to penetrate the joints. Biological growth can be seen at the moist areas.

Efflorescence and seepage

Efflorescence can be seen on the surface of bricks. At some areas, the flood of water has created white seepage stains, indicating substantial movement of moisture.

Entrance canopy dirty

The main entry to the lobby is through a glazed vestibule. The glass is extremely dirty.

The plywood panels, a signature material for the architect, are being scuffed and scratched.

Plywood condition

Haze on interior bricks

At the lobby space, a hazy film has settled on the bricks.

Aluminum panels removed to access drainage

It appears that the internal drainage system designed to remove water from the glazed skylighted areas has required repair. Aluminum panels have been removed to allow access to the drainage system.

Leaking overhead glazing

Water is penetrating the joint between the glazing and walls.
Wherry Hall
Kruckmeyer and Strong, 1959

Modernist
The simple volumes of Wherry Hall are clad in mottled brown brick with iron spots.

The building is an assembly of large solid volumes arranged asymmetrically.

A single-story bay projects from the face of the building. The street-facing façade is clad in limestone.

Secondary-entrance porches are located at corners of the brick structure. The entries are clad in stone and create a shady covered space in front of doors.
<table>
<thead>
<tr>
<th>Stone cap</th>
<th>Carved screens</th>
<th>Window details</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>The edges of the flat roof are detailed with thin stone bands.</td>
<td>Decorative carved stone screens can be found at each side of the entrance stairs.</td>
<td>The perimeter of each window opening is trimmed with a thin stone band.</td>
<td>Broken stone at top of projecting bay</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Windows are divided into thin horizontal sashes that are assumed to be operable jalousie panels.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Small vents are located above each window, creating a simple pattern.</td>
<td></td>
</tr>
<tr>
<td>Entry stairs are heavily damaged</td>
<td>Visible utility cables</td>
<td>Stone damage</td>
<td></td>
</tr>
<tr>
<td>The entry stairs are seriously deteriorated. Salts used to de-ice steps have accelerated deterioration. Sealant has failed, stones are cracked, and efflorescence covers the stone. Recessed step lights are closed. Some of the stone steps have been replaced.</td>
<td>Cables have been draped across the front of the projecting bay.</td>
<td>The stone trim around the openings at corner entries is broken.</td>
<td></td>
</tr>
</tbody>
</table>
Appendix B

Wherry Hall

Conditions (cont.)

Vertical cracking
A vertical crack runs the full height of a wall at the corner. There are no expansion joints in the masonry.

Diagonal cracking
Near the top of the building, a diagonal crack is visible in the masonry. This crack should be investigated.

Brick foundation is visible below stone base
Below the stucco band that forms the base of the building, brick is visible. This could be evidence that the grade has been changed.

Corrosion
Below mechanical louvers, water has deposited corrosion on the face of the building.
Unlike the other structures of the academic ridge, which sit up on a hill removed from the public way, Wilson Auditorium is pulled much closer to the sidewalk. Events held in the auditorium drew citizens of Cincinnati to the campus. The more-public connection between this structure and the street reflects the unique relationship of the building to non-university visitors.

At the east, rear elevation, the pediment over the doorway is split at the apex and a window is slipped down to rest on the bed.
Wilson Auditorium

Stonework

At the dressing- and practice-room wing, steel double-hung windows are aligned in a panel sheathed in stone.

The three-bay entrance is executed completely in stone.

Without windows to break up the large side facades of the auditorium, the architect used large, tall stone panels with bas-relief sculpture to provide visual relief and focus.

Metalwork

Above each pair of entry doors there are intricate screen transoms with chevron detailing.

Material associations

Like many of the early buildings on campus, Wilson is constructed of red brick and limestone.

Seating

Original auditorium seating with cast decorative details still remains.

Auditorium grills

Decorative plaster bands wrap the walls and across the ceiling. Located on the walls and ceilings are large, decorative grilles.

Light fixtures

Throughout the building, original streamlined light fixtures remain.
A large skylight, which originally lit the backstage area, tops the east end of the volume.

The library chimney breast is covered in carved limestone. A memorial inscription is carved into the stone.

Above the stairs, the ceiling steps and is highlighted by light strips.

The lobby is completely sheathed in walnut. The figured paneling covers not only the walls, but also the ceiling to create a dramatic interior.

Above the entrance lobby is a rich wood-paneled library. Wood species are inset to highlight decorative detailing.

Ticket office iron screens.

The tops of newel posts at the exit stairs are capped with aluminum in a geometric pattern.

Exit stair railings are detailed in streamlined aluminum and steel.
At the walls flanking the entrance doors, limestone is severely deteriorated due to the use of salt on the steps.

Stone steps are wearing badly. Open joints allow water to enter the structure.

Light fixtures selected for use on the exterior of the building are not appropriate to the style of the structure.

Front doors have been replaced with inappropriate solid steel utility doors.

Steel casement windows in all locations are exposed to the elements and are rusting.

Limestone is stained by atmospheric dirt and gypsum crust.

At the intersection of volumes, significant brick displacement has occurred.

Water has entered the roof over the library and caused damage to the decorative plaster ceiling.
Appendix B

Wolfson Hall
Tweddel Wheeler Strickland Beumer, 1976

Brutalist concrete with metal panels
The concrete construction of the building is exposed in a brutalist manner. Floor planes, beams, and round columns create visual interest on the otherwise unadorned structure.

Tower
A concrete tower is connected by a beam to the main building at the entry, creating an entrance gate.

Light well
At the entry plaza, a light well provides daylighting to basement spaces.

Metal panels
Metal panels enclose volumes of the building. The one pictured appears to be a former open stair that has been enclosed.
Wolfson Hall

<table>
<thead>
<tr>
<th>Pre-cast concrete panels</th>
<th>Conditions</th>
<th>Railings</th>
<th>Rust</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filling the space between concrete beams are tall, narrow pre-cast concrete panels. These appear to be replacements.</td>
<td>Cracking</td>
<td>Rails at the light well are bent.</td>
<td>Exposed steel at window edges is rusting and causing the window to be displaced.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exposed rebar</th>
<th>Paint failure</th>
<th>Water runoff</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rebar is visible at the underside of the balcony. It is rusting.</td>
<td>Paint at the vertical metal-panel system is failing.</td>
<td>Water from the plaza is running under the brick walls and dripping down the face of the concrete, leaving large white stains.</td>
<td>Exit stairs appear to have been enclosed with a white metal-panel structure. The loss of the open stairs and the visual interest they might have provided makes the structure boxy and lifeless.</td>
</tr>
</tbody>
</table>

Maintenance

Building expansion joint failure.
The structure is built into a steep hill. This allows a main entry on the sidewalk level but also a walk-out basement level with full windows.

Fully glazed bays protrude from the main plane of the brick façade. The bays are capped by a crenellated parapet with stone scuppers to remove water.

Crowning each chimney stack is a clustered chimney pair.

Gothic brick with stone detailing.
Copper gutters surround the building. These feed into decorative collection boxes and copper downspouts.

The foundation and basement are covered in stucco. Above, red brick with random dark glazed headers forms the wall structure.

Reflecting the original purpose of the structure, large, open rooms are found on the public first floor and basement below.

In the great room, the ceiling is decorated with beams and half-timbering. At the end of the grand room is a raised performance platform.

A large stone fireplace mantelpiece and overmantel are centered on the long wall of the major public room. The seal of the university is carved at the top.

On-center across from the stone fireplace, a shallow Juliet balcony allows observation of the great room.

A screen of Tudor arches divides the grand room from an adjacent open space.

On the lower level, immediately below the large first-floor room is another room of the same plan. The ceiling is not high, but a similar stage platform is constructed at one end.
Across the north side of the first floor, a solarium provides daylight to the public spaces and views across campus.

On the east side of the entry hall, a suite of offices remains in its original configuration.

Individual rooms are located on the floors above. They share a common, central bathroom on each floor.

In the entrance lobby, a grand wooden stair case leads to an intermediate landing and Juliet balcony to the main hall. The stair continues to the upper-floor residential rooms.

A glass skylight provides light to the second-floor resident’s kitchen.

Original equipment such as a blackboard cabinet and dumbwaiter shaft remain.

The plaster walls are finished with a rough texture. In places, the white paint has peeled to reveal the original plaster colors.

Wide-planked wood floors stretch across the main public space.
Exterior stair

Water has penetrated the stair structure and has stained and damaged the stucco covering the exterior walls.

Open joint

Additional investigation is required to understand the extent of damage.

Brick spalling

At the connection between the stucco foundation and the stone at the bay, a joint has opened.

The hand-thrown brick is spalling, especially at the upper portions of the walls and chimneys.

Brick spalling (cont.)

Panes of glass are missing from the multi-light door to the solarium.

Door at solarium

Acknowledging the damage to the mortar at the chimney, the joints have been repointed. The pointing color is brighter than surrounding mortar and is likely high cement mortar.

Repointing

The doors to the stone entry vestibule have been removed.
<table>
<thead>
<tr>
<th>Windows</th>
<th>Fire escape</th>
<th>Scupper</th>
<th>Roof</th>
</tr>
</thead>
<tbody>
<tr>
<td>The paint on the steel casement windows is deteriorated. As a result, the frames are rusting. Associated wood framing is also rotting.</td>
<td>The iron fire escape has no ladder.</td>
<td>At the scupper used to drain the roof of the bay, the sealant has failed.</td>
<td>The slate roof looks very worn. It is unclear whether this was the design intent or the result of aging. The roof should be thoroughly investigated.</td>
</tr>
</tbody>
</table>
A grand, sculptural stair ascends to a roof garden on top of the auditorium. The roof garden looks down into Library square and forms the centerpiece of a quad. Along the north side of Zimmer Auditorium, two-story high buttresses support a deep, ribbed, concrete cornice. The buttresses have a pebbled finish.
Zimmer Hall

Windows

Between the buttresses, large planes of dark glass are set in dark bronze aluminum frames. Window mullions are arranged in a symmetrical grid pattern.

Balcony

Along the north lobby, the floor adjacent to the auditorium is open between floors.

Brick pattern

Patterned brick walls form the auditorium side of the lobby space.

Conditions

Exposed rebar

At the entry cornice, rebar is exposed and rusting. Oxide jacking is opening a crack in the concrete.

Concrete stains

Water seeps off the roof garden above and is staining the face of the concrete.

Windows

Seals at the insulated windows have failed and the glass appears etched.

Brick stains

At the east side, facing Library Square, reinforcing in the brick wall is rusting. Rust is staining the face of the bricks.

Repointing

At the brick facing Library Square, salts used on the plaza have deteriorated the mortar. A shallow mortar slurry has been applied over the joints, but this coating has also failed.
Photography for Appendix B was supplied by John Milner Associates, Inc. and courtesy of the following offices of the University of Cincinnati:
Academic Health Center Photo Services
Administration and Finance, Planning + Design + Construction
University Libraries
 Archives & Rare Books Library
 University Digital Collections
University Photo Services