Chapter 6

Architectural Assessment and Recommendations

Introduction

This chapter describes and analyzes the character and features of buildings on the East and West campuses at the University of Cincinnati. In particular, this chapter explores individual “signature” and “mature” or heritage buildings through a narrative description of their forms, components, and materials, accompanied by photographic and cartographic illustrations. Condition, management, and maintenance issues that threaten the long-term viability of these buildings are also discussed.

The survey is divided into two groups, “signature” and “mature” buildings, on the basis of a list submitted to the Getty Foundation. To understand and discuss these buildings, the survey team reviewed the entire campus environment during a series of campus tours in October, November, and December 2006, using Paul Bennett’s University of Cincinnati as a guide for further information about the buildings. We also benefited from observations of the signature buildings and landscapes by Michael Sorkin, engaged as the architectural critic for the Getty grant, whose commentary (see Appendix A) offered a unique perspective on works of the “recent past” that in most campus heritage plans would only rarely be considered for their significance before reaching the 50-year threshold for historical evaluation. Finally, while this plan focuses on “signature” buildings selected by the Office of the University Architect, the list of “mature” buildings was expanded on the basis of field observations, for a fuller discussion of those resources more than 50 years old.

Each structure was visually assessed from the exterior; limited interior assessments focused on major public spaces or rooms and features that were brought to the team’s attention during the campus tours. The campus buildings that are the focus of this chapter include (figures 6-1 and 6-2):

Signature Buildings

West Campus:
- Aronoff Center for Design and Art
- Campus Recreation Center
- College-Conservatory of Music; CCM Village
- Vera Clement Edwards Center
- Engineering Research Center
- Richard E. Lindner Center
- Joseph A. Steger Student Life Center
- Donald Core Tangeman University Center
- University Pavilion

East Campus:
- Vontz Center for Molecular Studies
Mature Buildings

West Campus:
- Alms Building
- Baldwin Quadrangle: Baldwin Hall, Old Chemistry Building, Swift Hall; Braunstein Hall
- Carl Blegen Library
- Dieterle Vocal Center (formerly Schmidlapp Gymnasium)
- Annie Laws Auditorium (Teachers College)
- McMicken, Hanna, and Cunningham Halls
- Memorial Hall
- University YMCA
- Wilson Auditorium
- Van Wormer Hall

East Campus:
- Health Professions Building
- Logan Hall

Mt. Lookout (Off-Campus):
- Cincinnati Observatory

These buildings, along with their landscape settings, are icons of the academic vision and aspirations of successive generations of university leaders and patrons. They reveal the influences of choice of architects, stylistic trends, topography and expansion patterns, economic factors that affected the duration and coherence of building campaigns, and the vision of the Hargreaves master plan.

Overview of Campus Architecture

As discussed in Chapters 2 and 3, much of the University of Cincinnati campus was, until the mid-20th century, shaped by classical planning and aesthetic traditions. The university’s traditional buildings display a variety of styles — each influential when the buildings were constructed — which characterize discrete areas within the campus and infuse the whole with layers of significance. Although not typically considered “signature buildings” like those that have raised the university’s national profile in the press, these structures are still integral to the character of the built environment as the campus has evolved.

The Beaux Arts style, made fashionable in public buildings and civic planning by the World’s Columbian Exposition of 1893, came to dominate early development on the West Campus through the use of a vocabulary of monumental symmetrical forms and axial relationships, expressed in masonry, and the classical orders seen in examples like Van Wormer Hall and Baldwin Quad. A restrained Art Deco-detailed classicism is manifested in the Blegen Library, Annie Laws Auditorium, and Braunstein Hall. This movement was carried forward in the freely interpreted Neo-Georgian style of buildings like Tangeman University Center (the old “Union” building embedded within the present structure) and “new” McMicken Hall. Only Memorial Hall and the University YMCA building portray a more romantic collegiate Gothic aesthetic.
Successive building campaigns increasingly challenged classical values of harmony, stability, and unity, replacing them with strict functionalism, competing and conflicting axes, increasingly irregular forms, and unpredictability of deconstructivism, seen in the Aronoff Center for Design and Art and the Vontz Center for Molecular Studies. These buildings express more about the organization of social spaces within than a particular aesthetic. In the new century, University Pavilion, the Steger Student Life Center, and the Campus Recreation Center suggest the return to a restrained “classical” vocabulary of strong geometric forms used to define space while decorative elements are used to express structural forms and modern materials.

However, if categories based on “style” describe the chronological development of the campus, campus buildings may also be discerned as sharing common patterns derived from topography, building materials, and character-defining features, as objects in the landscape or as frames for open space, as derivatives of the automobile’s necessary presence on campus, and as the products of reshaping open space and surrounding neighborhoods through building retention and demolition of the urban fabric. Not surprisingly, the interplay of these patterns and the grouping of land/building uses — both at the perimeter of the “superblock” and as infill within the core — play significant roles in defining the character of the campus and its various districts. The University of Cincinnati Master Plan 2000 provides an extensive analysis of these and other physical frameworks of the campus.

Construction Chronology

Overlaying plans of campus building development, in decade-by-decade layers, show the patterns of earliest construction along the “Academic Ridge” and in the adjacent ravine. Later, they show building out at the fringes of the superblock, culminating in the astonishingly dense infill of the last decade, which has brought the university to the 21st century (figures 6-1 through 6-24).

Topography and “Force Fields”

Topography has played a major role in the development of the university’s West Campus buildings. The orientation and location of buildings responded to the topography of Burnet Woods, establishing a framework and form for the development of the hilltop campus. The master plan analyzes these and other “force fields” as a means of linking historic and contemporary campus buildings and open spaces.

- First, the ridge running north-to-south on the west side of campus became the location of Samuel Hannaford’s “old” McMicken Hall and Van Wormer Library, parts of a symmetrical alignment proposed in an 1895 “suggested” view of the “University of Cincinnati Campus in the Twentieth Century.” Subsequent buildings were located along this “Academic Ridge” to create a formal, outward-facing line of buildings along and above Clifton Avenue.

- Second, a ravine running northeast behind the ridge bisected the present campus superblock and provided space for recreational activities. Nippert Stadium and an open-air amphitheater took advantage of the natural topography of this ravine, thereby establishing a new axis of construction.
• Third, Baldwin (now Herman Schneider) Quad filled in the northeast end of the ridge, adjacent to the ravine. Baldwin Hall, Old Chemistry Building, and Swift Hall were composed at a tilted 13-degree angle from the linear arrangement of buildings along the Academic Ridge.5

Buildings added to the campus were generally oriented around one of these three axial constructs. As the campus grew away from these three axes, construction was oriented to streets. Eventually, the ravine was filled in with new construction, providing a natural subterranean location for the garage beneath the Mary Emery Hall of the College-Conservatory of Music. An earlier amphitheater, at the south end of the ravine, is echoed in the Patricia Corbett Theater’s fanlike shape.

At a pedestrian scale, the hilly terrain of ridge and ravine has required the construction of steps, stairs, bridges, and ramps for building access. Entrances to many buildings occur on multiple levels, taking advantage of the sloping ground planes. For some buildings, the main floor is level with grade on one side while exposed foundations at the opposite side form a plinth for the construction rising above.

Relationships between Buildings and Open Spaces

Early campus construction addressed open space in two ways. Buildings located atop the ridge at the “Clifton Arc” faced outward to acknowledge the city and public street grid. Behind this public front, structures were sited in ways that created open spaces within processional groupings of buildings. Baldwin Quad and Teachers College Courtyard are examples of spaces defined by buildings.

Later, mid-20th century construction did not appear to address the creation of open space. Rather, structures during this period were placed around the perimeter of the campus to accommodate the automobile. At the same time, buildings constructed within the campus core were large enough to enclose space. The science and engineering cluster became a stand-alone destination rather than contributing to the pedestrian feeling and scale of the earlier campus. Large buildings became barriers to casual pedestrian interaction.

As envisioned in the University of Cincinnati Master Plan 2000, signature buildings have been constructed to adapt to spaces. Organic forms curve and angle around “force fields” and pedestrian “streets.” Interstitial spaces have been carved out as small-scale, lush courtyards. Some buildings, like the Steger Student Life Center, have been designed with openings at ground level to allow pedestrians access through the building, without entering the interior, as gateways to adjacent open spaces and buildings. This building also shelters the Mews, an intimate collection of outdoor spaces designed concurrently with Steger.

Building entrances and parking bear strong relationships to open-space issues:

Entrances

Campus buildings constructed in the first half of the 20th century celebrated the sense of arrival. Monumental stairs, elaborately carved architraves, entrance bridges with large light pylons, and delicate concrete cantilevered canopies were designed to be focal points and provide orientation to the pedestrian.
Determining where to enter some later structures, where entrances are located deep in shade, off tunnels, under buildings, or at inside corners, seems to require special knowledge. Many of these structures, responding to site topography, have more than one “principal” entrance and, on occasion, what appear to be entrances are actually emergency egress doors. Dumpsters and loading docks also often appear to be more prominent than building entrances. A notable exception is University Pavilion, which is remarkable for its bright red panels and metal canopies marking and sheltering the main building entrances.

Space for Parking

Accommodation of the automobile has molded the university’s built environment in many ways. As more and more students arrived by single-occupant cars, the need for parking and access to parking lots and garages drove construction decisions. During the last quarter of the 20th century, large portions of the campus beyond the Academic Ridge and ravine came to be occupied by surface lots. Implementation of the master plan carried with it the determination to remove surface parking while providing equivalent space in new parking structures. Buildings such as Rieveschl, Langsam, Lindner, and Edwards were constructed with underlying parking structures, resulting in an imposing massiveness that dwarfs earlier structures.

Demolition

Historic aerial photographs reveal that a number of older structures have been demolished to make way for new buildings and open spaces. In particular, McMicken Commons required significant demolition between McMicken Hall and Tangeman University Center to create this new, monumental open space and for construction of University Pavilion. Removal of buildings was also required to construct the large-scale Campus Recreation Center north of Nippert Stadium. Other demolition has resulted in the removal of Sawyer Hall; one of the “Three Sisters;” and Sander Hall. The master plan envisions further potential demolition, notably Wilson Auditorium, and there has been discussion of removing the University YMCA building.

Neighborhood Character

The West Campus has grown to fill a superblock that clearly demarcates the neighborhood edge. At earlier times, the Clifton and Corryville neighborhoods were interwoven along the north and east sides. The first significant move beyond the Academic Ridge and ravine occurred with the construction of Alms and the DAAP Addition in the 1950s, extending the campus northward across a street into Burnet Woods. Urban renewal of the Corryville commercial center at Vine and McMillan Streets; the widening of Jefferson Street and Martin Luther King, Jr. Drive; construction of the “Three Sisters” group of dormitories; and displacement of small-scale housing by surface parking (and the federal government’s construction of the EPA lab in the early 1970s) effectively redrew the northern and eastern boundaries.

The loss of residential neighborhood areas had an impact on commercial strips along Jefferson Avenue, which fell into vacancy and disrepair. Recognizing that the quality of the surrounding neighborhoods’ environments had a critical impact on attracting and retaining students and faculty, the university undertook an ambitious program of fostering neighborhood collaboration to encourage the development of new housing and commercial space that would enhance both the campus setting and
the neighborhoods. Community urban redevelopment corporations were established in partnership between UC and the neighborhood organizations of Clifton Heights, University Heights, and Corryville. Among the resulting new development efforts are University Park and McMillan Park retail on Calhoun Street (both on campus); Bellevue Gardens apartments on Martin Luther King, Jr., Drive; luxury condos and apartments at the Village at Stetson Square (adjacent to Bellevue Gardens); Charlton Place apartments; and Stratford Heights student housing west of Clifton Avenue. As these projects have come on-line, the university has begun to withdraw from its involvement in the corporations. Significant neighborhood clearance is in evidence along the McMillan/Calhoun corridor, where redevelopment remains incomplete.

Materials

Many of the earliest campus buildings were constructed in revival styles using brick with stone or terra-cotta detailing. The red brick and buff-colored trim visually unite the buildings to create a cohesive appearance. By the mid-20th century, as modernism arrived on the campus, brick and stone continued to be favored materials; however, large expanses of glass and exposed concrete structural systems replaced multi-light double-hung windows, carved stone trim, and intricate terra cotta decoration. Aluminum-frame window systems and precast exposed aggregate panels were hallmarks of contemporary high-rise construction on the east side of the campus superblock. At the end of the 20th century, brick — although in a variety of colors, especially the brown and tan ranges — remained the characteristic material choice, with structural concrete becoming more prominent in cantilevers and balconies. Ribbed-metal panel systems were also employed, but mostly for sheathing mechanical penthouses. For the most part, architects for projects completed since the turn of the 21st century have rejected brick as the primary finish material and, instead, used a variety of metal panel or shingle systems, or precast concrete.
Description, Assessment, and Recommendations for Signature Buildings

As exemplars of modern architecture, UC’s signature buildings are described and assessed by noted critic Michael Sorkin in Appendix A. Being works of the recent past, these structures’ significance lies in the extent to which they embody clear design ideals, as the works of recognized masters at the peaks of their careers.

Detailed notes describing the character-defining features of the structures are presented in the thumbnail descriptions, photographs, and condition assessments found in Appendix B. It should be noted that sealant failures or the likelihood of such failures is an almost universal maintenance issue that must be continually addressed for all of the buildings surveyed.

West Campus

Aronoff Center for Design and Art (1996)
Peter Eisenman in association with Lorenz and Williams

One of a few built examples of work designed by Peter Eisenman, the complex mass of the Aronoff Center is nestled against the side of DAAP Addition into the terrain of the vestigial Burnet Woods landscape.

Eisenman’s “generative methodology” (to use Michael Sorkin’s phrase), which might be the pioneering application of “force fields” later described in the master plan, is expressed in a vocabulary of deconstructed wall planes and a disorienting floor plan with a confusing array of interior footbridges and passageways. The interior skylighted main hall/atrium space, lodged between studio spaces and the DAAP building, arcs upward to follow the external topography as a monumental staircase. Office, library, and studio functions are organized along the outside with views of Burnet Woods. The lightweight material construction of the building (exterior insulation and finish system, interior drywall, aluminum window frames with baked-enamel finishes, pastel color palette), while a practical low-budget means to a formal end, imparts a perishable character to this contemporary masterpiece.

The atrium promenade offers a community gathering space, particularly in the lower-level café, and is used for juried critiques of student work. While the formal expression of the atrium is relatively fixed, office and studio spaces along the north side of the building are more utilitarian in character and could be reconfigured to meet changing needs. Materials and finishes have experienced extensive wear and tear in the decade since the building’s completion, notably the exterior cladding system, which shows signs of degradation (cracking, surface delamination to substrates, and fading) and discoloring biological growth in shady areas where runoff has washed over surfaces. Water infiltration around the window system has been persistent.

Recommendations: Maintenance and Adaptability

The long-term performance of synthetic stucco is still an unknown but vulnerable to moisture intrusion. At a minimum, the exterior finish system should be repaired in kind. Consideration may be given to proven, traditional stucco materials, but there will undoubtedly be issues of structural support for heavier materials, color matching, and long-term maintenance of any applied paint coatings, all of which militate against a wholesale change of the cladding material. The lack of flashing at heads and sills and inadequate weeps at window assemblies must be addressed. Appropriate detailing of remedial measures or replacement window systems should be selected to maintain the architect’s “thin-line” aesthetic and color scheme.

Studio and office areas may be reconfigured without apparent effect to the building character. The approach to the principal entrance from Clifton Court and the Crosley Tower plaza and garage should be reconsidered in order to strengthen linkages to campus pathways. This will assist in better orienting the visitor who otherwise approaches the interior atrium from the DAAP Addition — a very confusing path, indeed.
Campus Recreation Center (2006)

Morphosis Architects

The CRC is a key component of the streetwall along MainStreet and also mediates an extreme 20-foot grade change from end to end. It is a brooding, massive programmatic ensemble of student housing, classrooms, recreation facilities, and a dining room intended to animate campus life 24 hours a day, seven days a week. Enclosing the open north end of Nippert Stadium with an expansive roofscape and a bridge to the Lindner Center, the S-curve of the building parallels MainStreet and extends the arc of the stadium’s grandstand to an intersection with the cantilevered housing slab, which visually terminates the Campus Green. Dark colors, metal-panel cladding materials, canted perforated metal shade screens at rooftop level, and the slotted windows in the dormitory accentuate the expressive forms of each component of the building envelope. This building has also achieved LEED certification.

The CRC, which opened in early 2006, is in excellent condition with no signs at this early date of material failures. Much of the building envelope’s performance depends upon the success of the gasket system and sealants used in the cladding assemblies, the life expectancy of which is unknown. The building’s somber nature and recessive activity spaces do not notably contribute to a sense of “24/7” activity on MainStreet. Dark colors, low lighting levels, shadowy recesses, and the interior plaza punctuated by sunlit oculi project a foreboding air that can be uninviting. Concerns have been expressed that the quality of the dormitory living spaces is diminished by the stinginess of the strip windows. Classroom and dining spaces may require reconfiguration over time as needs change. The planning team did not visit the residence-hall interiors.
Recommendations: Maintenance and Adaptability

Failed joint sealants and expansion joints will need to be repaired and replaced on a cyclical basis. Birds roosting in the metal screens may become a nuisance, and steps should be taken proactively to minimize the problem. The architect should be engaged to re-examine the interior plaza design and suggest ways of softening its present character which may be deterring people from gathering comfortably—perhaps through the introduction of technological elements, such as “light pipes” in the oculi or fiber optic lighting, consistent with the building design.
College-Conservatory of Music (1967-99)

CCM Village (1995-99)
Henry Cobb in association with NBBJ

Integrated into the topography of the ravine behind the academic ridge, the Patricia Corbett Theater roof, with its fanlike shape, recalls the earlier amphitheater. A series of interior and exterior public spaces, often approached down cascading stairways and affording glimpses of landscape, are woven together around four performance venues by an extensive armature of classroom/studio, office, stage support, and practice spaces. Adjacent rehabilitated historic structures, including Dieterle Vocal Arts Center (formerly Schmidlapp Gymnasium) and Memorial Hall, further enrich the complex.

The palette of warm brick elegantly detailed, horizontal window mullions uninterrupted by vertical mullions, “stacked” rectangular modules of the curtain walls at lobby entrances, and the vest-pocket gardens and plaza spaces reinforce the building’s horizontal emphasis and intimate scale. Within the CCM complex, spiky pyramidal rooftop monitors on Mary Emery Hall suffuse the principal interior concourse and grand stair with daylight. The exuberant light fixtures and rich wood finishes of the rehabilitated Corbett Auditorium interior have turned this performance hall into an event in itself. The CCM was the winner of 2001 American Institute of Architects National Honor Award.

The CCM is in excellent condition and appears to perform well for its intended functions. The highly specialized spaces within CCM are unlikely to be easily altered for other purposes; interiors of lobbies and performance venues will eventually require upgrades in seating, finishes, electronics, and/or acoustic performance. The rehabilitation of Corbett Auditorium is a first-rate example of this kind of change.

Recommendations: Maintenance and Adaptability

The principal issue appears to be ongoing maintenance of masonry, some of which displays signs of biological staining and efflorescence, missing flashing, and sealant failures. Water infiltration through masonry needs to be addressed immediately and may require rebuilding of some parapets, which do not appear to have flashing in all instances. Inspecting flashings, cleaning masonry surfaces using the gentlest means possible, and re-pointing where necessary using the original mortar specification are appropriate components of a cyclical maintenance regimen.
Vera Clements Edwards Center (1992)
Skidmore, Owings & Merrill

Built for use as "swing space" during the major building campaign, the Edwards Center is an “undistinguished functional work...more corporate than campus.” The precast-concrete building structure appears as a skewed cube above the podium.

The building is in excellent condition and easily adaptable to various office and classroom functions.

Recommendations: Maintenance and Adaptability

Interior adaptation was built into the design equation for the Edwards Center. Cyclical, non-abrasive cleaning of the exterior is required to remove dirt and staining.
Possibly one of Graves’s best buildings, the ERC provides a transition between the traditional campus to the scale of modern signature buildings. It is sited on-axis with University Avenue on the approach from Jefferson Street; however, the building’s apparent symmetry is counterbalanced by its off-center entrance module surmounted by a peripteral temple form. Laboratory bays, expressed in four exterior volumes or modules, are linked by a barrel-vaulted copper roof that is punctuated by four mechanical penthouses with conical vent stacks. The floor plan is clearly delineated: the internal core of lab spaces is circumscribed by a perimeter corridor, while office/classroom bays along the corridor’s external edge articulate each of the four building modules. The rich use of materials includes an Ohio sandstone base; brick detailing with roundel windows, which provide natural light to the internal circulation paths at each end of the structure and in setbacks between modules; and interior wood trim. Inside, a barrel-vaulted stairway (echoing the roof form) within a classic Gravesian peristyle hall/lobby transects the building and mediates the grade transition from MainStreet to Library Square.

Assessment: How Is It working? Successes? Failures? Potential for Change?

The building is a model of functional clarity and is pleasing in its post-modern detail. It is in excellent condition. Lab and office/classroom bays may require reconfiguration as needs change, but such change is unlikely to affect the basic building plan.

Recommendations: Maintenance and Adaptability

Cyclical, non-abrasive cleaning of the exterior is required to remove dirt and staining. Faded sealants require replacement and should match the color of the brick; open joints should be sealed. Special attention should be given to the character-defining peripteral temple form, where sealant failure and color washout are most evident. The integral color of precast-concrete sills is washing out and streaking the face of the building.
Richard E. Lindner Center (2006)
Bernard Tschumi

The Lindner Center’s “beefy, minimally detailed, structural system” is expressed in the triangular geometry of deeply recessed windows and the curvilinear precast concrete construction of the exterior. A vertigo-inducing, full-height central atrium — with glass railings that dissolve the corridor edges at each floor, a free-floating ribbon-like stair, a red and black color scheme, and display cases celebrating the university’s athletic programs — is surrounded by flexible perimeter offices. The building has been LEED certified.

The building is in excellent condition. The geometry of its precast exoskeleton minimizes opportunities for successful alteration. Likewise, the central atrium has an almost temple-like quality in which most change will be reflected in the contents of exhibits. Perimeter office areas are flexibly planned and could easily be changed as needs arise. The building seems suitable for a future green roof installation.

Recommendations: Maintenance and Adaptability

A cyclical maintenance plan for the building should be prepared. Changes to perimeter office areas should be limited.
Joseph A. Steger Student Life Center (2004)
Moore Ruble Yudell Architects

“Literally and figuratively central in creating the form and atmosphere of MainStreet,” the Steger Center’s large windows reveal its mixed tableaux of retail, student activity organization offices, and multipurpose uses while affording views of street activity, Nippert Stadium, and The Mews. This sliver of a structure follows the curve of MainStreet and stair-steps with the topography to provide terraces and recesses among the column bays for gathering. It also forms a gateway between MainStreet and the Herman Schneider Quad. The building’s horizontal scale is emphasized by its brick base surmounted by terne-coated, metal-clad structure and expressed by horizontal seams of cladding and brises-soleil. Simple interior spaces have polished concrete floors and drywall finishes. The SSLC is LEED certified.

The building is in excellent condition and receives high marks for its functionality. While the overall footprint is fixed by the geographic context of the building, making expansion unlikely, its loft-like interior spaces can be reconfigured for changing office or commercial uses without adverse impact on the whole. The building appears suitable for a future green roof installation, particularly since roof areas are visible from the interior.

Recommendations: Maintenance and Adaptability

A cyclical maintenance plan for the building should be prepared. Guidelines for commercial signage may be desirable in the future, if none are already in place. Decomposed granite being tracked in from the adjacent Mews is causing floors to scar prematurely.
Tangeman University Center (2003–2004)
Gwathmey Siegel & Associates

The TUC is a gathering space and multipurpose meeting facility with food courts and a campus bookstore. The iconic clock tower, floating within a skylight atop the gabled slate roof, and Ionic limestone portico face McMicken Commons and align with McMicken Hall. The zinc-coated metal (echoing the clock tower cladding) encasement of a traditional brick building describes a circle in plan intersected by the west wall of the original 1935 neo-Georgian structure. Curved glass walls on the east side open to views of Bearcat Plaza and Nippert Stadium from a skylighted interior atrium, which occupies the original building shell. None of the original building interior has been retained.

The building is in excellent condition and serves well as an indoor gathering space and “transfer point” between various campus paths on different levels at the heart of the campus. It is a functional component of the larger campus activity center, which includes the Campus Recreation Center and the Steger Student Life Center. Large, loosely programmed spaces could be easily modified to meet changing needs; food vendor and bookstore spaces and furnishings are most likely to change over time.

Recommendations: Maintenance and Adaptability

A cyclical maintenance plan should be prepared for the building, with particular attention given to inspection of the interlocking seams of metal shingles and siding as well as to in-kind repair or replacement of slate roofing and cleaning and re-pointing of masonry.
University Pavilion (2003)
Leers Wenzapfel with GBBN

University Pavilion, housing a variety of student services as well as university executive offices, is an elegant enclosure for the south side of McMicken Commons. “Volumetrically simple...at once airy and solid,” the pavilion’s limestone panel walls with punched windows on three sides relate to the Teachers College Quadrangle and more traditional buildings nearby. The solid planes of the limestone “wrapper” are then offset at the corners adjacent to McMicken Commons to, expose the five glassy bays of the atrium within. Set into a sloped site (formerly the site of Beecher Hall), a monumental interior stairway inside of the glass curtain wall ascends the academic ridge within the atrium and is mirrored by a parallel exterior stair in granite. Red insets reveal public entrances at varying levels, which are announced by projecting flat canopies supported by slender diagonal braces. The structure is capped by the cantilevered roof overhang of the penthouse, which floats over a roof terrace. Interior finishes include a generous use of maple screen paneling for atrium railing panels and walls, which is complemented by the brushed-aluminum or stainless-steel hardware.

The building is in excellent condition. Office space is likely to be adapted as needs change.

Recommendations: Maintenance and Adaptability

A cyclical maintenance plan should be prepared for the building, along with clear specifications or guidelines for partition systems and materials to be used in renovated office areas. This approach will ensure a high level of finish commensurate with the building design.
East Campus

Center for Academic and Research Excellence/Crawley Building
(completion anticipated in late 2008)

Studio Architecture with Harley Ellis

This building was under construction at the time of our visit and was not assessed.
Clad in prefabricated brick panels, the sculptural form of the Vontz Center features curved or twisted wall planes juxtaposed with the glassy grids of projecting window bays. Inside, the open cruciform plan neatly divides office and laboratory functions, which meet in a central circulation atrium. Interstitial floors house mechanical, electrical, and plumbing systems for the laboratories. Natural wood finishes delineate lobby/circulation spaces.

The building is generally in excellent condition and, by all accounts, works extremely well for its intended purposes. The building is designed with interstitial spaces to allow easy reconfiguration of mechanical, electrical, and plumbing systems without disruption to ongoing work in the building.

Window seals have leaked and repair or replacement requires exterior access. Automated interior sun screens were added to windows to curb glare and heat gain. Brick panels show open joints and moisture damage that need to be addressed.

Recommendations: Maintenance and Adaptability

The long-term durability of the brick panels is unknown. A cyclical maintenance plan should be prepared for the building to address water leakage, with clear specifications for the repair of brick-panel and window systems. This approach will prevent future ad hoc solutions that would compromise the building’s character. Office and laboratory spaces each have their own material palettes, which should be respected and maintained.
Description, Assessment, and Recommendations for Historically Significant Buildings

The significance of UC’s “mature” structures lies in the story they tell of the early development and 20th century expansion of the university. These buildings reflect university leaders’ aspirations to build a “city [of learning] on the hill,” following classical principles of planning and design.

Detailed notes describing the character-defining features of the structures are presented in the thumbnail descriptions, photographs, and condition assessments found in Appendix B. In recommending preparation of cyclical maintenance plans for each building, it should be noted that the university already has a successful regular process for roof inspections. Additionally, sealant failures or the likelihood of such failures is an almost universal issue of maintenance that must be continually addressed for all of the buildings surveyed.

Off Campus

Cincinnati Observatory (1873), Samuel Hannaford
Ormsby McKnight Mitchel Building (1904), Samuel Hannaford & Sons

Located away from the main campus, the Cincinnati Observatory complex is a National Historic Landmark and a unique cultural monument of significance to the university, the city, and the nation. The recognition of the observatory’s historical importance through its recent rehabilitation demonstrates the university’s commitment to preserving this important resource.

The buildings have recently been restored and are in excellent condition.

Recommendations: Maintenance and Adaptability

A historic structure report (including a cultural landscape component) for the observatory buildings and grounds should be prepared, if one has not, to supplement the National Historic Landmark nomination as the documentary foundation for planning a cyclical maintenance program and careful in-kind repair based on analysis of materials.
Alms Building (1952)
George Roth and James E. Allen

Designed to house the College of Applied Arts, the Alms Building “jumped” the barrier of University Avenue (now Clifton Court) to occupy what was then the southwest corner of Burnet Woods. It is a well-proportioned, geometric, concrete and masonry structure, the horizontal emphasis of which — accentuated by rooflines, projecting canopies, and ribbon windows — is strongly reflective of the early modernists, in particular artists such as Piet Mondrian. Large aluminum-framed windows set in front of the structural grid offer views of the park to the north, dissolving the boundary between interior and exterior space, while the campus side presents a solid composition of masonry planes and glazed voids. The DAAP Addition forms an ell with Alms and complements the ensemble in form, massing, and materials. Aluminum window systems are single-glazed without thermal breaks and awning/jalousie window units may allow air and water to infiltrate or be inoperable.

The original auditorium, gallery, and library spaces have been cluttered with makeshift studio partitioning, furniture, and trash, which obscure the original interior clarity. There does not appear to be a second means of egress from these areas, and the original stair no longer meets code.

Recommendations: Maintenance and Adaptability

Interior spaces, if no longer needed for their intended purposes, are adaptable as open studio space, but consideration should be given to using these spaces as models of interior design and contemporary furnishing that reestablishes their integrity. Front-door access to the building should be re-established and lobby spaces clarified. Elevator access and code-compliant means of egress should be thoughtfully upgraded or inserted to avoid compromising the unity of the spaces. A cyclical maintenance plan, including careful, in-kind repair based on materials analysis, should be prepared. Poor thermal performance in the window systems may result in a desire to retrofit or replace them. In-kind repair of such character-defining features is preferable from a preservation standpoint, and alterations should be carefully considered to match the existing materials, framing patterns, and transparency.
Herman Schneider Quadrangle (formerly Baldwin Quadrangle):
Baldwin Hall (1909) and Old Chemistry Building (1917), Teige & Lee and Woodward & Garber with addition by Harry Hake (1938); Swift Hall (1925), Harry Hake; Braunstein Hall (1933), Crowe & Shulte

Baldwin Hall, built to house the College of Engineering, is the focal point of a rectangular open green space that was balanced by subsequent construction of Swift Hall and the Old Chemistry Building. Baldwin Quad was the first attempt to apply the Beaux Arts planning idiom to the UC campus, steering toward a new orientation that canted off axis from the original academic ridge — the “city on a hill” where buildings were lined up in formation and overlooked the city below — by initiating a new practice of grouping buildings together in axial symmetry to create self-contained spaces.

These massive, neo-classical red brick and terra-cotta buildings feature temple fronts and symmetrical façades. The processional entrances are elaborated by monumental stone stairs, double doors with transoms, engaged piers and Ionic columns supporting entablatures, and classical detailing such as dart-and-egg molding, cartouches above doorways, tripartite inlaid meander fretwork in the friezes, and heavy cornices with dentil molding. Limestone or terra cotta is used in stringcourses to delineate floors and lintels and sills for double-hung six-over-six windows. The interior of Swift features a Rookwood tile vestibule, and Old Chemistry has a Rookwood fountain.

In 1920, fire ravaged Baldwin and prompted the first restoration; since then it has undergone three renovations, in 1971, 2002, and 2003. Old Chemistry was expanded in 1938, and the interior was renovated in 1972. Windows have been replaced. Swift Hall underwent a complete renovation as part of the Steger Student Life Center project in 2004.

Baldwin is in excellent condition, with public spaces and classrooms rehabilitated to retain their historic character. Many of its laboratory functions have been moved to the adjacent Rhodes Hall, with which it connects. Swift Hall is in excellent condition, although it exhibits some staining in the stone work. Old Chemistry needs updating and repair. Corridors are cramped gathering spaces for students waiting for class changes.

Recommendations: Maintenance and Adaptability

A cyclical maintenance plan, including careful, in-kind repair based on materials analysis, should be prepared, notably for terra-cotta cornices and trim and for repointing the brick masonry. Because the interiors of Swift and Old Chemistry have undergone significant change over the years, few character-defining features remain (the Rookwood pieces are an exception), and spaces can be freely reconfigured.
The Carl Blegen Library, a stripped-down rendition of a classical building in the style of Paul Cret, was built during the university’s early-20th century expansion to house a growing collection of 500,000 volumes. The principal façade is composed of a limestone base (which extends two more stories below the apparent grade at the sides and rear) and two-story reading room surmounted by an attic story. The central bay, with tall windows denoting the reading room, is clad in limestone and flanked by projecting brick pavilion ends, which are distinguished by fluted corner pilasters and shallow vestigial balconies with bas-relief panels below deeply inset windows.

Art Deco decorative elements, typical of this transitional period, appear in the Greek, Hebrew, and Latin iconography in bronze window grilles, front entrance and interior doors to the reading room, exterior and interior light fixtures, bas-relief stone sculpture, and other details of the interior public spaces. The two-story reading room on the second floor, spanning the central façade bay above the main entrance, has a shallow arched ceiling and tall windows that allow daylight to enter. Replacement windows have been installed throughout the building.

The building is generally in excellent condition, although the reading room is highly cluttered and should be restored down to furnishings and fittings. The closed stack and study carrel areas may be ripe for reconfiguration, depending on current library needs. Information-technology, energy-conservation, life-safety, and accessibility upgrades may be required.

Recommendation: Maintenance and Adaptability

The building continues to be used for the purposes originally intended and requires little alteration. Restore the simple clarity of the reading room, including the adjacent circulation-desk and card-catalog lobbies. Non-public, utilitarian spaces such as stack areas may be rehabilitated to adapt to new uses.

Great care should be taken with the exterior and principal interior public spaces to preserve decorative metalwork, masonry detailing, interior spatial volumes of public spaces, and decorative features and iconography, using the Secretary’s Standards and best conservation practices. A cyclical maintenance plan, including careful, in-kind repair based on materials analysis, should be prepared, with particular attention paid to bronze and stone conservation, flashings, and re-pointing of masonry (not to mention the removal of “pigtail” fluorescent light bulbs in exposed locations).
Dieterle Vocal Arts Center
(formerly Schmidlapp Gymnasium)

As a counterpoint to the sleekness of the CRC, Dieterle punctuates the southern rim of Nippert Stadium with a Beaux Arts statement in the brick and terra-cotta vocabulary of Baldwin Hall. Dieterle is the only example of a tile roof on campus. The interior has been rehabilitated for use as a choral training facility. The gymnasium volume, which replicates the size of the Corbett Auditorium stage, has been preserved and provides a symphonic practice space.

The building is generally in excellent condition and appears to well serve the new function for which it has been adapted. It seems highly unlikely that the building would ever revert to its original function, for which it is outmoded by current physical recreation standards.

Recommendations: Maintenance and Adaptability

Exterior terra cotta requires removal of paint coatings and careful repair. Replacement window sashes have been set within the original wood frames. These frames and the decorative flagpoles require repainting. A cyclical maintenance plan, including careful, in-kind repair of materials, should be prepared, with attention paid to roof repair/replacement and maintenance of ornamental copper downspout collection boxes, in addition to terra-cotta repair and exterior painting.
Annie Laws Auditorium (1930)
Garber and Woodward

Annie Laws Auditorium is part of the Teachers College quad, and its lobby has long served as a path along the Academic Ridge from McMicken Hall to the Blegen Library. The auditorium is expressed as a distinct volume with engaged pairs of limestone columns in a tripartite colonnade supporting an entablature on the principal façade. Each end of this brick pavilion has single columned bays with inset two-story arched windows. Like Blegen, Laws is a stripped-down classical composition with Art Deco sensibilities. The lobby and double-height auditorium space have extensive classical detailing, such as molded cornices and decorative panels, columns, wainscoting and vaulted or coffered ceilings, and fanlight doors. The auditorium has been divided into two classrooms with suspended ceilings.

The building bears heavy traffic and appears — aside from the lobby and the now-concealed auditorium — to have an undistinguished, utilitarian character. Interior classical detailing in the auditorium has been largely concealed by alterations that divided the spatial volume to accommodate classrooms and lower the ceiling.

Recommendations: Maintenance and Adaptability

Despite the traffic, the lobby and auditorium appear to have survived as hidden jewels of this period of campus development, and should be reclaimed. It is recommended that the auditorium space be restored to its original volume and detailing for multi-purpose use. Exterior stone detailing, especially at the columns, is damaged and requires conservation.
McMicken, Hanna, and Cunningham Halls (1948)
Hake & Hake

The brick classical McMicken with its flanking wings, designed in the Georgian idiom, replaced the original structure destroyed by fire. An iconic Wren-like steeple dominates the Academic Ridge and recalls the country’s colonial roots in the College of William and Mary in Williamsburg, Virginia. A massive engaged temple front with a decorative entablature and three-tiered tower above demarcates the entrance passage with engaged columns, Ionic engaged capitals, and the venerable sculpted lions, “Mick” and “Mack.” An arched passage opens from the University Arc green space to a view of McMicken Commons and the Tangeman University Center. Limestone trim delineates parts of the building, visually separating the two upper floors from the ground floor, which appears as a continuous arcade with inset windows. Replacement windows are double-hung aluminum or fiberglass, and window openings have limestone trim keystones and sills. The dormered gable roof is covered with slate shingles. Interior public lobby areas feature wood cornice moldings, chair rails, and pedimented architraves; classrooms are of utilitarian design. It is significant for its contribution to reinforcing the university’s efforts to project itself as a national institution.

Offices and classrooms are arrayed in a double-loaded corridor scheme. These spaces are generally utilitarian in finish and serve their intended purposes, although information-technology, life-safety, and accessibility upgrades may be required.

Recommendations: Maintenance and Adaptability

A cyclical maintenance plan, including careful, in-kind repair based on materials analysis, should be prepared, with particular attention paid to masonry, slate roofing, and associated concealed gutters. Stone and wrought-iron stair entrances are deteriorating and should be addressed soon. The lack of expansion joints in long masonry walls may result in cracking. Interior lobbies, in Hanna and Cunningham halls particularly, should retain their architectural woodwork features (architraves, wainscoting, etc.) in their natural finish.
Memorial Hall (1924)
Hake & Hake

Memorial Hall first served as a residential hall for men and later, for women. It is a Jacobethan-style building with a six-story tower sporting large gargoyles at each corner, bay windows, crenelated parapets, a dormered slate roof, and decorative chimneys. A renovation in 1958 added a south annex and altered the hall’s entrance. Memorial Hall harmonizes with the earlier University YMCA building in style and contributes to the change in planning, which redirected buildings from the linear ridge alignment to an expansion that worked with the steep grade of the topography, placing buildings at an angle to the Academic Ridge.

The 1996 building rehabilitation converted dorm rooms into practice rooms for the College-Conservatory of Music.

The building is in excellent condition and functions well for its adapted purpose.

Recommendations: Maintenance and Adaptability

A cyclical maintenance plan, including careful, in-kind repair based on materials analysis, should be prepared and should call for checking of downspouts. Properly remove paint and repair the terra-cotta trim. Tower windows should be restored to leaded glass in lieu of the glued-on muntin system presently in place.
University YMCA (1915)
Zettel and Rapp

The University of Cincinnati contracted with the YMCA to open a facility on campus in 1915. Located close to the sidewalk on the Calhoun Street corridor, the compact red brick building with limestone trim is in the Collegiate Gothic Revival style. Several large public rooms feature carved stone fireplaces, wood-beamed ceilings, and leaded-glass bay windows and are ranged along the north and west sides around a central stair hall. Dormitory accommodations are located on upper floors.

The University YMCA is currently unused and showing signs of deterioration due to neglect. Some consideration has been given to removing the building. The interior is currently not fully accessible. Information-technology, energy conservation, and life-safety upgrades are required.

Recommendations: Maintenance and Adaptability

The university should reverse any course toward demolition and seek a creative, sustainable reuse of the structure. The Y's location and character could accommodate alumni-related uses, an honors student study center with housing, public receptions by university officials, or (possibly) library or mock courtroom space for the nearby College of Law. Appropriate mothballing measures should be undertaken immediately. Roof leaks at bay windows and other deterioration of the building envelope (including the steel casement windows) must be addressed immediately through in-kind repairs. Interior finishes must be repaired and code compliance issues resolved in a well-considered rehabilitation plan.
Wilson Auditorium (1931)
A. Lincoln Fechheimer and Benjamin Horst

A sister of the Carl Blegen Library, Wilson Auditorium was built in a stripped-down classical style. Aligned with Braunstein Hall, it “bookends” the Clifton Arc (Taft Law School being the other “bookend”) and extends the line of the Baldwin Quad to connect with Clifton Avenue. As a location for public performances, the building has strong associational ties for the community.

The tripartite arrangement of lobby, auditorium, and stage house is expressed in the streamlined volumes of the building exterior. The almost windowless exterior is articulated by strong vertical lines of decorative stone panels, including Art Deco bas-relief panels on the side elevations. The paneled lobby and second-floor memorial library (featuring a large carved stone fireplace), decorative stairwell railings and light fixtures, and other original auditorium details are also infused with an Art Deco sensibility.
Wilson Auditorium, having been supplanted by the more modern performance venues of the College-Conservatory of Music, is currently unused (or used for storage) and is in poor condition. Its state of neglect has been aggravated by water leakage, vandalism, and use as a police anti-terrorist training center. Insensitive alterations have resulted in the removal of the original front doors and exterior lighting.

The master plan shows the building being removed to make way for a new structure. The building is not currently accessible, and the large interior volumes of the auditorium and stage house present both challenges and opportunities for adaptive reuse. Information-technology, energy-conservation, and life-safety upgrades are also required.

Recommendations: Maintenance and Adaptability

The university should reverse any course toward demolition and seek a creative, sustainable reuse of the structure. If medium-sized, auditorium-like classroom space is not needed on campus, rehabilitation for other academic uses should be considered. Roof leaks and other deterioration of the building envelope must be addressed immediately with appropriately mothballing measures.
Van Wormer Hall (1899)
Samuel Hannaford and Sons

Van Wormer is significant as one of the first buildings constructed on the Academic Ridge and the university’s first library. A cubic, neo-classical building with Greek Revival details and forms, including an attic story, dentil molding on a heavy cornice, a temple front with double-height Ionic columns, and a decorative entablature, it represents the stylistic arrival of Beaux Arts planning principles later evidenced in the Baldwin Quad. In 2006, the glass dome, which had been removed in the 1930s, was reconstructed. The interior is planned around the two-story rotunda with balcony. It recalls the many libraries built by Andrew Carnegie and the 19th century concept of the university as a “city on a hill” and a beacon of learning.

The building was rehabilitated in 2006 and is in excellent condition. Adapted for office space long ago, this former library works successfully for university administrative functions and now holds the honor of being the oldest building on campus.

Recommendations: Maintenance and Adaptability

A cyclical maintenance plan, including careful, in-kind repair based on materials analysis, should be prepared. The new stone cladding at the raised building base appears especially vulnerable to moisture and related deterioration.
The Health Professions Building, formerly the UC College of Medicine, was constructed as the last phase of a new Cincinnati General Hospital and Medical College complex built in the Avondale neighborhood just before World War I. The Beaux Arts building is E-shaped with a symmetrical façade on an elevated basement. The seven-bay-wide central block is connected by hyphens to two large projecting wings, each three bays wide, which bracket the ends. The corners of the central block are expressed by shallow projecting bays, and the center bays of the end wings are also projected. Structural bays of the principal façade are delineated by full-height pilasters surmounted by a simple parapet cornice, which is further elaborated with a higher parapet on the central block. Windows are mullioned in bands above masonry spandrel panels set between the pilasters. Van Wormer Hall on the West Campus and the Health Professions Building and Logan Hall (opposite page) on the East Campus are the last Hannaford-designed structures remaining on either campus.

The interior is in poor condition, and the exterior is in fair condition. The building is currently used for classrooms and office space, and its generally utilitarian interiors can be adapted to new uses.

Recommendations: Maintenance and Adaptability

A cyclical maintenance plan, including careful, in-kind repair based on materials analysis, should be prepared for the exterior. Inside, the front vestibule, lobby, and auditorium spaces retain finishes and details that should be retained and repaired as needed.
Logan Hall (1915)
Samuel Hannaford and Sons

Logan Hall, formerly the General Hospital Nurses' Home, is listed on the National Register of Historic Places and was constructed as part of the Cincinnati General Hospital and Medical College complex. The Beaux Arts building is U-shaped, with a symmetrical façade, the central block of which is one story higher than the two projecting wings and features an arcaded entrance loggia. The first floor is articulated by heavy stone banding, which creates a rusticated base. The lobby (the only interior space visited) is classically detailed with a coffered ceiling and pilasters, but the space has been subdivided by drywall partitions that are not at full height. Original interior wood doors appear to be in place.

The building is in good condition and is reasonably well suited for its current office use by a university-affiliated psychiatric practice group. Former residential spaces now used as offices are presumably utilitarian and can be adapted to new uses.

Recommendations: Maintenance and Adaptability

A cyclical maintenance plan, including careful, in-kind repair based on materials analysis, should be prepared for the exterior and should include repair of ground-floor stucco, stone cleaning and repair, and flashing and sealant replacement. Inside, the lobby retains original finishes and details and should be restored.
Maintenance Recommendations and Guidelines

Building uses come and go, but original historic fabric, once lost, can never be reclaimed. Seemingly small losses and degradation that occur over time will, eventually, amount to significant and irreversible damage to the integrity and character of both signature and historic resources. Therefore, the goal of preserving and maintaining historic or character-defining fabric, features, materials, and design elements is the basis of the recommended treatment approach. The importance of routine cyclical maintenance using methods and materials appropriate to the university’s buildings, and of training facility managers and maintenance crews in the application of recommended treatment guidelines, cannot be overemphasized.

In general, observing the principles for accommodating change outlined in the preservation approach (Chapter 4) is the foundation of any maintenance program.

- Continue to use a property as it was designed to be used, or find a new use that minimizes changes to character-defining features.
- Identify and retain distinguishing building qualities and characteristics.
- Maintain, protect, and repair existing character-defining features, materials, and finishes. If features are deteriorated beyond repair, replace in kind.
- Be authentic: if a feature is missing or must be removed, use accurate documentation to guide replacement.
- Respect the evolution of historic changes, fashion, taste, and use.
- Do not use maintenance methods or materials that damage significant building fabric.

Typical Conditions: Masonry

The majority of the late-19th century and early-to-mid-20th century buildings on campus have masonry walls. As with all historic materials, frequent evaluation and careful maintenance can solve minor problems before they become large, expensive repairs. The preservation approach recommended here places the emphasis on retention and repair; any necessary replacements should be made in kind, matching the existing in color, texture, size, and other visual qualities.
Masonry repairs should be performed only by those skilled in preservation solutions and techniques. Masonry repair is a complex subject. It is important to understand that different types of stone and brick have different physical properties, weights and densities, and surfaces. The masonry material, the type and extent of damage, and the proposed methods of repair should be determined before any work begins.

An examination of masonry on campus reveals damage from defective or missing flashing, open joints, and (occasionally) rising damp, as well as the effects of applying ice-melting compounds. Treatment approaches may be categorized as follows:

Cleaning

Harsh chemical cleaning, sandblasting, and high water pressure can cause significant, irreversible damage to buildings. Careful analysis of masonry properties is recommended, as is testing of proposed cleaning agents on small areas before proceeding with the work. In general, use the gentlest means possible.

Repointing

New mortar joints should match their historic counterparts in color, material, and profile. Mortars with a high percentage of Portland cement are less permeable than soft bricks and can cause deterioration by salt deposition in the masonry. Refer to building specifications, or conduct mortar analysis to determine the composition of original mortar for use in repointing.

Inappropriate Repair

The use of inappropriate materials or workmanship can alter historic appearance and damage historic fabric. This can include the use of contemporary synthetic sealants and caulking applied in lieu of mortar. These sealants and caulks, intended to keep moisture from entering a structure, can instead trap water and cause joints to fail, with adverse visual results. In some instances, sealants have failed to retain their colors, and runoff has discolored adjoining wall surfaces. In other instances, inappropriate color matching has created an unintended visual prominence for sealant joints.

Deferred Maintenance

Water penetration, efflorescence, spalled stone or terra cotta, and cracked masonry were observed in several buildings, and, in some cases, terra cotta has been painted to conceal deterioration. On exterior walls, deteriorated mortar, open joints, and settlement cracks are evidence of moisture and possible thermal differential movement. Failed or open joints in brick, limestone, terra cotta, and granite masonry, most due to normal weathering, are visible at parapets, cornices, and trim. Open joints are often found behind downspouts.

It is fair to say that many of these observations are transferable to modern panel cladding systems. The long-term performance of the panels, gaskets, and sealants may not be known as yet, but the principles of carefully examining material properties and taking appropriate measures before problems become insurmountable apply the same as for masonry structures.
Building alterations to upgrade accessibility, energy efficiency, and information technology will likely present the most immediate challenges to UC’s “mature” buildings. Generally, loosely programmed or secondary spaces may be considered as candidates for changes in use. Some of these areas are identified in the preceding paragraphs, as are several significant interiors (some of which should receive greater appreciation). Alterations and new construction should not destroy significant features or materials nor alter a building’s defining character. Additions and new work should be compatible with their context.

Demolition

Lack of appreciation due to changes in taste can lead to inappropriate alterations, neglect, or loss of buildings. Notwithstanding the master plan concepts, structures or parts of structures that contribute to the integrity of the campus should not be demolished unless it is determined that there is imminent threat to life or property. From the standpoint of sustainability, the embodied energy of these structures can provide environmental and cost-saving benefits to future generations.

Where it is determined that demolition is required, the demolition should be kept to an absolute minimum and limited to secondary areas or areas of extreme deterioration. Any demolition should be carefully planned to minimize impacts on historic features, materials, and floor plans. Historic features, elements, materials, and designs that would be altered or lost by
demolition should be thoroughly documented with photographs and measured drawings.

Additions and New Construction

As stated in Chapter 4, existing university buildings offer opportunities for creative new uses, and the multiple layers of history and aesthetics found in existing buildings can inspire creative and compatible designs for new construction. Just as signature and historic buildings vary, new construction should be individually tailored to the historic building and its site. The design of any addition or new infill should be in proportion to the size and scale of the adjoining building(s) and should take into account the character of the landscape and the precepts of the master plan.

The primary objective in planning an addition is to determine whether the building can be modified without detrimental impact to the signature or historic design, materials, and site. Some buildings cannot accept new exterior additions because of these considerations. Additions should be subordinate to the original building and should not impact or change the general perception of the building’s signature or historic design. They should be compatible with the architectural character of the signature or historic building, using matching or complementary materials without being a copy of the original building.
Endnotes

3 Bennett, 5.

4 Bennett, 9.

5 Bennett, 57.

6 Michael Sorkin

7 Michael Sorkin

8 Michael Sorkin

9 Michael Sorkin

Photography

All photography for Chapter 6 was supplied courtesy of the following entities:

John Milner and Associates

Public Library of Cincinnati and Hamilton County

University of Cincinnati:

Academic Health Center Photo Services

Administration and Finance, Planning + Design + Construction

University Libraries

Archives & Rare Books Library

University Digital Collections

University Photo Services