Acknowledgements

Clermont College Master Plan Committee

Krista Clark
William Davis
Kelly Frigard
Ryan Hall
Victoria Hall
Lora Hasse
Dexter Hulse
James McDonough
Robert McLaughlin
Michael Mullarkey
John Nelson
Kevin Peck
Joel Peckham
Jennifer Radt
Susan Riley
Dr. Gregory Sojka
Stephen Young

Clermont College Master Planning Team

Mary Beth McGrew
Pete Snyder
Len Thomas
Weston Munzel
Crystal Sherron
Lucy Cossentino-Sinnard

Contributors

University of Cincinnati
Comprehensive Facilities Planning, Inc.
Vivian Llambi and Associates, Inc.
Photos, Illustrations and Graphics by University of Cincinnati Planning, Design and Construction Department and University of Cincinnati Photo Services
Table of Contents

Chapter One - Introduction and Executive Summary

1.1 Introduction 1-3
1.2 The Master Planning Process... 1-4
1.3 Key Planning Issues.. 1-5
1.4 Key Goals and Design Principles ... 1-7
1.5 Key Master Plan Concepts and Recommendations .. 1-10
1.6 Implementation and Financing of Priority Projects .. 1-14

Chapter Two - The Clermont Campus History and Background

2.1 Campus History 2-3
2.2 College Governance .. 2-5
2.3 Pedagogy 2-7
2.4 Degree and Certificate Programs ... 2-7
2.5 Programming Strengths ... 2-8
2.6 Influences on Future Academic Programming .. 2-9

Chapter Three – Existing Conditions and Constituent Input

3.1 Introduction 3-3
3.2 Regional Context ... 3-4
3.3 Surrounding Area Land Use .. 3-6
3.4 Community’s Use of Campus .. 3-6
3.5 Campus Internal Layout ... 3-8
3.6 Vehicular Access and Circulation ... 3-8
3.7 Parking 3-11
3.8 Parking Lot Use Data .. 3-13
3.9 Service and Delivery Access .. 3-13
3.10 Pedestrian Circulation ... 3-14
3.11 Accessibility for Persons with Disabilities ... 3-15
3.12 Recreational Opportunities ... 3-16
3.13 Natural Features and Site Analysis .. 3-17
3.14 Signage and UC Branding ... 3-19
3.15 Lighting 3-23
3.16 Site Furnishings .. 3-24
3.17 Pavement 3-24
3.18 Buildings/Facilities ... 3-24
3.19 Summary of Constituent Input .. 3-30
3.20 Summary of Input from Nearby Governmental Entities .. 3-34
Chapter 1:
Executive Summary
1-Executive Summary

1.1 Introduction

The University of Cincinnati’s Clermont College campus is in the midst of significant changes based on enrollment growth and academic mandates that will impact the evolution of the campus. To help guide the evolution of the campus, a comprehensive master plan was produced. This master plan provides a long range vision and framework to achieve the campus’ vision and guide future investment decisions and growth. The plan outlines the physical framework, discusses the goals and policies to guide the location, scale, design and implementation of new investments and provides recommendations for a ten year timeframe. Issues addressed include, but are not limited to, academic programming, space needs, building expansions, building locations, landscape, infrastructure, pedestrian and vehicular circulation and parking. The plan identifies priorities and recommendations for improving the appearance of the campus and provides a basis for identifying and allocating resources. The master plan supports and aligns with the College’s Mission Statement and Strategic Plan 2010. This master plan also allows for objective implementation of the plan as participants change.

The University of Cincinnati—Department of Planning, Design and Construction has facilitated the master planning process and the production of this master plan document. As part of that process, an educational facilities planning consultant, Comprehensive Facilities Planning, Inc., was retained to collect and analyze the facilities’ utilization information and outline recommendations regarding space needs. In addition, a landscape architecture firm, Vivian Llambi Associates, Inc., was hired to provide graphic representations of the master plan vision.

The most recent master plan developed for the Clermont Campus was in the early 1990’s. Periodic updates to campus master plans every 10 years or as needed, are important, to ultimately create a successful and vibrant campus. From a more technical perspective, updating master plans accommodates shifts in academic priorities, changes in the student population, allows a fresh look at existing space, allows the university to address changes in the political climate as relates to funding from the state and

The Clermont College Strategic Plan outlines many academic strategies for the college. This master plan helps support the strategic plan’s vision.
also empowers constituents to create and implement the plan. This master plan update will provide a means to frame future investments and growth to achieve the college’s goals.

1.2 The Master Planning Process

The Clermont College master planning process was organized into several phases, beginning with inventory and evaluation of existing conditions, identification of planning issues, establishment of goals and objectives, development of alternative plan concepts and concluding with the refinement of those alternatives - based on campus priorities - into a recommended campus master plan.

Phase 1 - Inventory and Evaluation

This phase of the process included gathering information, such as existing campus land use, existing campus improvements (circulation, parking, buildings and open space), verifying the college’s Mission Statement and Strategic Plan 2010, collecting current and projected enrollment data, current and anticipated programmatic information, current space utilization data, conducting building assessments and utility infrastructure surveys and developing a site conditions analysis.

Phase 2 - Constituent Input, Issues, Goals and Objectives

Working meetings, input interviews and open forums were held to obtain input from the college and its constituents as well as input from nearby governmental units. This input, along with the inventories and evaluation data, provided the basis for determining the goals and objectives portion of the master plan.

Similar participatory processes were used to review and comment on the alternative concepts and the recommended plan. As a result of using this type of planning process, the college has obtained a valuable and comprehensive document with which to plan for the future.

The following constituent groups have provided information and input that was used in the development of the recommended plan:

- Dean’s Office
- Athletic Department
- Technology Services
- Students
- Criminal Justice / Police Academy
- Public Information / Arts
- Facilities Services
- Administrative Services
- Business Division (Academics)
- Humanities Division (Academics)
• SME Division (Academics)
• Academic Services
• Faculty Planning
• Faculty Senate
• Student Life / Student Government
• Staff Council
• Mailroom Services
• Public Safety
• Outreach and Development
• Allied Health (Academics)
• Student Services
• The Library Staff
• The Learning Center Staff
• First Responders
• Advisory Council
• Clermont County Administration, Planning, Economic Development and Utility Departments
• Batavia Township
• Village of Batavia
• Economic Development Corporation of Clermont County

Phase 3 - Alternative Plan Concepts

Conceptual site plans and strategies were developed to examine and test potential solutions, ideas and or scenarios for both short-term and long-term growth needs of the campus. These ideas addressed the campus needs, issues, goals and objectives that were identified in the previous planning phase. Big and small ideas, academic priorities and other needs and wants were discussed and funding strategies are identified as part of outlining planning scenarios.

Phase 4 - Recommendations and Implementation Strategies

The recommended plan was developed from the alternative plans, incorporating comments and discussions about the alternative plans and input received from the master planning committee as well as identifying realistic funding scenarios for implementation. The plan was further refined through the process of review, evaluation and discussion with the college’s administration and constituency groups.

1.3 Key Planning Issues

The following represents several of the key issues that have been identified and should be considered when future decisions are made relative to the growth and investment in the campus.

Academic and Collegiate Restructuring

The University of Cincinnati has re-evaluated the academic plans for its regional branch campuses (UC Clermont and Raymond Walters College). This re-evaluation is in response to recent changes in higher education in the State.
degrees that compete with Clermont College. These will be considered as part of the analysis of programmatic decisions. The following educational institutions compete with Clermont College in the Cincinnati region.

- Northern Kentucky University
- Gateway College
- Xavier University
- Miami University – Hamilton Campus
- Miami University - Fairfield Campus
- Sinclair College– campus in Warren County and Dayton
- Cincinnati State
- ITT Technical College

In addition, University of Cincinnati Uptown Campus and Raymond Walters College should be considered as programming decisions are made.

Demographics

The demographics in the vicinity of the UC Clermont College campus indicate that a major portion of the college’s student population is from the southeastern portion of the state; including Adams, Brown, Highland, Clinton and Clermont Counties. These counties continue to be growth areas for the college for the foreseeable future. UC Clermont College is in the unique position to respond to many of the general trends in higher education for this region of the state since UC’s Clermont campus is the closest institution for higher learning geographically to these counties and to the students seeking learning opportunities. The balancing of meeting these students’ needs and the State of Ohio’s vision must be considered.
Enrollment Growth Projections

Student enrollment projections continue to increase. Ten to fifteen percent annual increases have occurred in the recent past while a 14.8% increase was recorded from fall 2008 to the fall 2009. Future growth is projected in the range of 3% per year. Providing the necessary amount of academic space and appropriate support space to accommodate increasing enrollments is a key element of this plan.

Physical Campus Issues

According to the space planning consultant assisting the university, Comprehensive Facilities Planning, Inc. (CFP), the facilities on the Clermont Campus are presently used at a high level of efficiency and therefore additional or expanded spaces are necessary to meet current and future needs.

The additional space needs as identified by campus priorities and the space analysis conducted by CFP, Inc. include:

- Classrooms (size of room: 30-49 occupants/room)
- Teaching Laboratories (Biology, Police Academy, Machining/CAD, Allied Health)
- Faculty Offices
- Library or Learning Commons
- Learning Center
- Expanded cafeteria and food choices
- Bookstore
- Student Spaces
- Public Safety Facilities

Other physical issues to consider include:

- Additional parking is needed to meet the demands of an increased student population.

A signwall and green space serve as the "front door" to UC Clermont.

- Vehicular access to campus and use of new SR 74 extension to College Drive.
- Minimizing pedestrian/vehicular conflicts and circulation within the campus.
- Creation of a “front door” for the campus.
- Balancing the existing natural features on the campus with new building and parking lot placement.

1.4 Key Goals and Design Principles

The following goals and design principles were identified as priorities based on constituent input and university planning standards. These guide decision making as additional resources are allocated towards improving the campus.

- Create an environment that supports the mission of Clermont College and its programs as far as instruction, extension and professional service.
New signage was installed at key locations when the new road and new parking lots were constructed in summer of 2009. New signage follows the guidelines outlined in the 2005 Clermont College Signage Plan as well as UC branding strategies.

- Develop a master plan and land use plan that will guide the growth of the Clermont College Campus in a way that conserves financial resources and balances growth with existing natural resources. (See the land use plan map on the next page.)

- Establish an entry with a clear sense of arrival to the campus. Improve branded signage and wayfinding information, including mapping, identification and directional signage throughout the campus and in the immediate vicinity of campus.

- Create a centrally located welcome center to provide assistance and key services to students, staff and visitors.

- Buildings, entrances and open spaces should be designed to provide an inviting and human scaled environment to be defined with appropriate signage, lighting, landscaping and site furnishings. The outdoor gathering areas should be part of the campus identity and provide informal opportunities to gather as community. Good connections from new and existing facilities to the existing campus core should be provided.

- A palette of materials that can be modified while maintaining an overall uniform appearance for the campus should be identified.

- Academic facilities should meet the needs of teaching and scholarly endeavors as defined by the academic and/or strategic plans. As much as possible, facilities for like disciplines should be physically adjacent or clustered; integrating teaching, and offices.

- Facilities should anticipate and support changing technologies and

Historical newspaper clipping about the creation of UC Clermont College—from the 1969 News Record.
The campus land use plan outlines recommended uses of land to help focus growth in appropriate locations and as a result, balance new investment with preservation of environmentally sensitive areas.
identify future expansion areas, including any future land acquisitions.

- Provide energy efficient buildings using environmentally sensitive building methods that limit the impact of adding facilities to the natural campus environment.

- Develop attractive parking areas convenient to future facility locations. These parking areas should be connected to the campus facilities by well-lit pedestrian walkways to provide convenient and safe routes. Parking should be accessible and safe for students with or without disabilities, especially for those attending evening classes.

Several additional specific goals/design principles are reflected in the Long Range Development Plan (see page 1-15) as follows:

- Separation of pedestrian and vehicular traffic, which enhances the safety of pedestrians.

- Incorporate the use of three story buildings into the campus to provide greater efficiencies in the built environment and to minimize the size of building footprints and their impact on the natural environment.

- Incorporate parking decks into the campus to minimize additional surface parking and as a result, help preserve existing natural areas.

- Utilize sustainable development and design techniques to help reduce the campus' carbon footprint.

- Create a campus plan that connects buildings through the use of green spaces / quads and has an axial organization for visual and physical connections.

1.5 Key Master Plan Concepts and Recommendations

The recommendations in this section are based on the space needs and data as outlined by UC’s space planning consultant in Chapter Five, balanced with the observations and input from college constituents and the design principles that evolved through the planning process. Ultimately, the college will prioritize functional space needs and match proposed projects with funding streams in order to implement components of the plan, but the ideas and site plans in this section outline the framework to plan for and accommodate growth.

General Concepts

- Utilize the Campus Land Use Plan, the 10 Year Development Plan and the Long Range Development Plan drawings to guide the location of buildings, parking decks, pedestrian connections and preservation areas. These drawings reflect the organization of buildings around green spaces and parking on the perimeter of campus.
• Utilize sustainable design and construction techniques for new buildings, renovations or additions to existing buildings as well as parking infrastructure or other applications as appropriate.

• Utilize the design principles outlined in Chapter Six of this plan to guide architectural and urban design of buildings as well as the planning and maintenance of the landscape.

• Continue to follow and implement the guidelines of the Signage Plan that was adopted in 2005.

Concurrent Projects 2009-2010

• Concurrent with this master planning process, several infrastructure projects related to parking and circulation were completed in 2009 including the construction of two surface parking lots totaling 220 parking spaces and the creation of a new access drive connection from campus—south to Bauman Road.

• Concurrent to this master plan, short term space needs were resolved by leasing 40,000 gsf of space in the new UC East campus, which is about three miles east of the Clermont College campus. An additional 40,000 gsf of space was leased by the UC Uptown campus for a total of 80,000 gsf of space being leased by UC at this location. Evaluation of how this space and location meets UC Clermont’s needs should be discussed as future decisions are made.

M10 (Ten Year) Development Plan Concepts *(See the Ten Year Development Plan drawing on page 1-12.)*

• Renovate a 5,500 sf area of the Edith Peter Jones building to create five updated classrooms. This includes a new roof over the renovated area. This

The new access drive on the southern border of campus—connecting campus to Bauman Road.

A new surface parking lot on the south end of campus was completed in September of 2009.

To alleviate short-term space needs, Clermont College is leasing 40,000 gsf at the new UC East Campus. The UC Uptown Campus is also leasing 40,000 gsf at the UC East Campus.
project is estimated to cost approximately $2.7 million.

- Build a 39,000 gsf three story addition to the Student Services Building located on the west and south elevations of the existing building. Proposed uses are ten to fifteen classrooms, office space and student services functions. Utilize a geothermal system for heating and cooling with the location of the geothermal wells to be determined. This project is estimated to cost approximately $16.5 million.

- Continue to evaluate the use of the UC East campus for classroom and teaching lab space needs.

- Renovate the southwest corner of McDonough Hall to create four science teaching labs. This project is estimated to cost approximately $2.6 million.

- Build a new parking deck over a portion of the existing south parking lot as shown on the Ten Year Development Plan.

- Shift the rotary / drop off circle to the southwest creating a building area south of the West Woods Academic building and that will help delineate and frame the primary quad.

- Re-configure the green / primary quad area creating the framework for an axis of green space connecting this quad with additional buildings to be constructed to the south. The new primary quad would include an outdoor dining area, new site furniture, plantings and signage. Sidewalks would reflect the actual pedestrian routes that connect destinations to each other.

- Create an outdoor amphitheatre for academic or cultural lectures etc.
• Implement enhancements within and around the southerly parking lots to improve pedestrian safety and connectivity to the campus.

• Implement environmental sustainability management strategies on campus to include timber stand management and pond management.

Long Range Development Plan Concepts *(See the Long Range Development Plan on the opposite page.)*

• Build a new access drive along the west boundary of the west parking lot that then curves to extend along the southern boundary of campus. The new access drive would connect to the existing southerly drive at a rotary. Remove a portion of the existing access drive after the new drive is completed. The section to be removed extends from the existing East Parking lot westward around the curve to the circle drop off area.

• Build one or two new parking decks on the perimeter of campus. One on the remaining areas of the south lot and a second one on or near the south half of the west lot. Provide pedestrian connections and paths to campus from these new parking decks.

• Continue to evaluate the use of the UC East campus for classroom and teaching lab space needs.

• Build one new building of approximately 30,000 to 40,000 gsf on the west side of the primary quad as outlined on the Long Range Development Plan to ultimately complete framing of the quad.

• Build an addition on the south side of the West Woods Academic building. This addition and a new building to the south, could be connected (possibly with a colonnade) or combined if it makes sense at the time.

• Construct three new buildings to help create and frame a secondary quad located on the south side of the Student Services Building. The total new space in these three buildings would be approximately 150,000 gsf.

• Implement parking lot landscaping and pedestrian safety improvements as shown on the Long Range Development Plan.

1.6 Implementation and Financing of Priority Projects

Implementation of the plan is a function of matching project priorities as determined by the college, with funding streams that would pay for projects. Funding is generally from two types of sources, State of Ohio funds or funds generated by the college. State funds are generally used for new building construction and renovations of existing facilities that have educational and administrative functions; while local college funds are used for parking (decks and surface lots), roads and amenity space such as bookstores or food service, as well as grounds and landscaping projects.

Based on the college’s priorities, coordination of funding requests to the state as well as the planning, design and construction of projects should be a collaborative effort between Clermont College and UC’s Planning, Design and Construction department as well as the University Architect’s office.
Chapter 2: History and Background
over 188,000. Population projections estimate that the county will continue to be one of the fastest growing counties in the State of Ohio. The majority of the population is along the western border of the county in areas with easy access to the I-275 corridor. UC Clermont College is located about six miles east of I-275 near the county seat of Batavia.

The primary service area of UC Clermont College as defined by the Ohio Board of Regents is Clermont County. The secondary service area is any area where UC Clermont College draws 5% or more of its students, which includes eastern Hamilton County (Mt. Washington, Anderson Township and Newtown areas) Brown County, Adams County and Highland County to the east and north of UC Clermont. Most of the enrolled students reside in western Clermont County and eastern Hamilton County, which matches the townships and communities with the largest populations.

2- The Clermont College Campus

2.1 Campus History

Clermont College is a regional campus of the University of Cincinnati and is situated on a 91.2 acre campus that straddles both Batavia Township and the Village of Batavia in Clermont County. The college is located on the eastern edge of the Cincinnati metropolitan region and primarily serves residents of the eastern side of the region including: Adams, Brown, Clermont, Hamilton, Highland and Warren counties.

The original 60.9 acres campus has grown by acquisition of two additional parcels of land since it opened in 1972. In 1992, Bank One of Akron donated 45 acres of land next to UC Clermont College on the west. In 1994, UC Clermont College purchased 25.8 acres of land from the Clermont County Park Board to the east of UC Clermont College. The former Park Board land gave UC Clermont College additional frontage along College Drive.

The college was established within a primarily rural setting. However, over the last thirty-six years, the population has grown in the area and suburbia has crept up to and around the college, with suburban style subdivisions being built in the surrounding communities. Clermont County encompasses suburban style residential and retail development along its western half but has small older villages and rural farming areas on the eastern half of the county. At this time, Clermont County has a population of over 188,000. Population projections estimate that the county will continue to be one of the fastest growing counties in the State of Ohio. The majority of the population is along the western border of the county in areas with easy access to the I-275 corridor. UC Clermont College is located about six miles east of I-275 near the county seat of Batavia.

The primary service area of UC Clermont College as defined by the Ohio Board of Regents is Clermont County. The secondary service area is any area where UC Clermont College draws 5% or more of its students, which includes eastern Hamilton County (Mt. Washington, Anderson Township and Newtown areas) Brown County, Adams County and Highland County to the east and north of UC Clermont. Most of the enrolled students reside in western Clermont County and eastern Hamilton County, which matches the townships and communities with the largest populations.

Pedestrian route to campus from the West parking lot.
Clermont College is an open admissions institution, providing access to higher education to anyone with a high school diploma or equivalency. Clermont College's rolling admissions policy allows students to enroll during any academic quarter: autumn, winter, spring or summer.

The development of UC Clermont College was the result of a close cooperative effort between UC and a group of interested citizens of Clermont County. This effort came together when the community pledged over $125,000 for the purchase of the original 60.9 acres of land on which UC Clermont College was built. Responding to the community's efforts, the President of UC designated the Vice Provost for University Branches and Two-Year Colleges as the appropriate university agent to facilitate the creation of the college. The Vice Provost developed the proposal for a two year general and technical college, which the Ohio Board of Regents immediately chartered. Since UC was, at the time, still a city-controlled university, the state required assurances that the branch would be separately funded to receive full state subsidy.

The original name of UC Clermont College was Clermont General and Technical College. With the approval of the UC Board of Trustees and the Ohio Board of Regents, they adopted the

UC Clermont College Headcount 1990-2009

- **Student Headcount**
 - 1990: 1,430
 - 1991: 2,010
 - 1992: 2,185
 - 1993: 2,815
 - 1994: 3,713

Graph outlining enrollment growth (by headcount) of the college since 1990.

Actual headcounts based on Office OBR census dates for fall quarters 1990-2009.
current name—University of Cincinnati Clermont College in 1987.

When UC Clermont College opened in 1972, it was housed in a 77,984 square foot building which was newly constructed and is now the Edith Peters-Jones Building. The college provided scheduling during the day and evening hours for full-time and part-time students. This mode of academic delivery continues today, along with weekend and independent study opportunities.

The college has seen strong enrollment growth over the years, which justified new investment in buildings and the space needed to accommodate students. In 1993, the Cooper and Dorothy Snyder Building, a facility of approximately 56,499 square feet, was opened. This additional space was primarily classroom space. Construction of the Student Services and Educational Services buildings occurred in 2000. These buildings gave UC Clermont College an additional 28,531 square feet of new space. This was followed by construction of a 14,700 square foot sprung structure gymnasium facility in 2005, and then the new West Woods Academic Center Building (14,500 square feet) opened in May of 2006.

Enrollment at Clermont College has steadily increased since the college opened in 1972. The college had an initial enrollment of 300 students but as population growth in the surrounding area occurred and as programming matched the needs of the community, enrollment levels continued to steadily expand. In the fall of 2009, enrollment as far as headcount was 3,713 (2,701 FTE) which was an increase of 14.8% from the fall 2008 headcount of 3,241 (2,353 FTE).

Enrollment levels do have peaks and valleys, perhaps influenced by economic conditions, but the general trend at Clermont has been steady increases over the past 30 years or so.

2.2 College Governance

UC Clermont College is within the jurisdiction of the Ohio Board of Regents, as are the other colleges of UC. Unlike the situation at many other universities in Ohio with branch campuses, UC Clermont College is a separate college within the University. Since establishment of UC Clermont College in 1972, all public funding for UC Clermont College has come from the state. UC Clermont College is in a unique position in that it is administered by an integral part of UC, yet its financial support comes directly from the state. While this division between funding and administrative responsibility could have created confusion or lack of direction, in reality UC Clermont College has flourished under this arrangement. UC Clermont
College has the advantage of close association with a major comprehensive urban university and its varied academic and educational resources, and it also benefits from the separate state financial support. At times when the University of Cincinnati as a whole was experiencing fiscal challenges, UC Clermont College realized additional funding from increased enrollment and tuition and the resultant increase in state subsidy.

The Dean of UC Clermont College reports to the Senior Vice-President and Provost of UC. The Dean of UC Clermont College is a member of UC’s “Council of Deans” and participates in deliberations of that group. All policies and regulations of the UC’s Board of Trustees apply in the same manner to UC Clermont College as to any other division of the university. The university’s Board of Trustees has allowed UC Clermont College to charge tuition at a rate that is much lower than other components of the university.

In 1994, members from the UC Clermont College service area formed the Clermont College Dean’s Advisory Council. This council has a charge from, and is appointed by, the President of the University. It replaced an earlier advisory board that was more loosely organized. The mission of the college is approved by the UC Clermont College Advisory Council, and by the Provost of the Uptown Campus. Full-time faculty members of the college have the same status as the faculty of any other college in the UC system; they serve on the UC Faculty Senate and university-wide committees, participate in other faculty governance activities, and are covered by the American Association of University Professors (AAUP) collective bargaining agreement. As a separate college faculty, the UC Clermont College faculty has its own by-laws and its own reappointment, promotion and tenure (RPT) committees and criteria for each academic division. As such, UC Clermont College can emphasize teaching rather than the greater university’s research agenda as criteria for promotion, although research is a component of all three division RPT criteria. Academic appointments are also determined within UC Clermont College rather than through the Uptown campus.

Academic divisions of UC Clermont College are independent of the academic departments on the Uptown Campus, but coordination and cooperation do take place. UC Clermont College’s faculty participate on the university’s General Education Committee and work with departments in standardizing course content in English, mathematics and other subjects. Agreements between Uptown Campus and UC Clermont College programs are worked out to facilitate the transferability of credit. Students, likewise, are considered students of UC and are eligible for the same activities and privileges as are the students traversing campus.
students of any Uptown Campus college. The University of Cincinnati has direct oversight from a nine member Board of Trustees appointed by the Governor of Ohio. The full term of a trustee is nine years. The Board of Trustees annually elects from their members a chairperson and a vice chairperson. They also appoint a secretary, a treasurer and such other officers of UC as the interests of UC require. The Board of Trustees is vested with the responsibility to:

“Employ, fix the compensation of, and remove the UC President and such numbers of professors, teachers, and other employees as may be termed necessary. The Board shall do all things necessary for the creation, proper maintenance, and successful and continuous operation of UC and may adopt and amend by-laws and rules for the conduct of the Board and the government and conduct of the university. The board may accept donations or lands and monies for the purpose of such university.”

The board has the same authority over UC Clermont College as any other college within the UC system.

2.3 Pedagogy

Clermont College has small class sizes, with a student to teacher ratio of 20:1. Faculty may incorporate technology in their teaching methods as they see fit. The college would like to continue to keep classes as small as possible to retain the advantages that are derived from smaller class sizes.

2.4 Degree and Certificate Programs

Students may be admitted to UC Clermont College to pursue a degree or certificate program provided they have graduated from an accredited high school or have successfully completed the requirements for a GED High School Equivalency or a Home School Program. The college offers more than 50 associate degree and certificate programs in a wide range of subjects. The following degrees and certificates are offered:

Associate Degrees

- Accounting
- Addictions
- Aviation with Business Option
- Biology
- Business Information Technology
- Business Management Technology
- Chemistry
- Computer Aided Design
- Computer Information Systems
- Computer Integrated Manufacturing
- Computer Network Systems (Cisco Networking Academy)
- Computer Systems Support
- Corrections
- Early Childhood Education
- Education: Middle Grades
- Education: Secondary Grades
- Emergency Medical Services
- Forensics
- Human Social Services
- Interactive Multimedia
- Law Enforcement with Police Academy Option Liberal Arts
- Marketing Management
• Multi-Disciplinary
• Multi-Skilled Health Technician
• Organizational Leadership
• Paralegal Technology
• Pre-Business Administration
• Pre-Law
• Pre-Medical Professions
• Pre-Pharmacy
• Psychology
• Respiratory Care
• Simulation and Game Development
• Social Work
• Surgical Technology
• Urban Professions
• 1 Year Non-degree Transition Programs:
 • Nursing - BSN, UC College of Nursing
 • Nursing - RN, Raymond Walters College
• Pre-Engineering

Professional Certificates
• Accounting
• Accounting: Tax Information
• Administrative Management
• Computer Aided Design
• Computer Information Systems
• Cisco Networking Certificate (CCNA and CCNP)
• Computer Systems Support
• Diversity
• Family Assessment, Intervention & Management
• Financial Services
• Forensics
• Gerontology
• Marketing
• Medical Assisting

• Medical Biller/Coder
• Office Information Management
• Paramedic Education
• Paralegal Technology
• Quality Management
• Real Estate
• Software Productivity
• Surgical Assisting
• Traffic Safety Management
• Writing

Bachelor and Master Degrees

Degrees offered through the following University of Cincinnati colleges:

• UC College of Nursing
• Bachelor of Science in Nursing
• UC College of Business at our Park 50 location (Milford)
• Bachelor of Business Administration (**Not currently admitting new students**)
• UC College Education, Criminal Justice and Human Services
• Bachelor of Science in Early Childhood Education
• Bachelor of Science in Special Education
• Bachelor of Science in Middle Childhood Education
• Bachelor of Science in Paralegal
• Bachelor of Science in Criminal Justice

2.5 Programming Strengths

Although all of UC Clermont's programs offer a high quality curriculum; Criminal Justice, Allied Health, Nursing and Business are cornerstones to the campus program offerings.
2.6 Influences on Future Academic Programming

There are several entities and or political issues that will influence how the institution evolves and provides programs, educational resources and or meets its goals in the future. As these decisions are made and implemented over the next few years, the facilities required to support any changes in academics would need to be updated or expanded to accommodate priority programs. This master plan will provide a guide as to how and where to invest resources to implement these planning documents. The following elements are key issues the college has to navigate as future programming is determined.

- The State of Ohio Strategic Plan - This plan for higher education will impact restructuring of programming on the regional campuses and how programs or degrees will be maintained or how new programs will be initiated. The state’s objective is to offer one of the lowest-cost paths to a bachelor’s degree in the US by making available to residents in Ohio, the low-cost offerings of a network of regional campus/community colleges and linking that with the quality bachelors’ degrees available from nearby universities. However, this goal needs to be coordinated with the participants. This is part of the state’s plan to provide educational access within 30 miles of every resident in the state as well as to integrate course and program networks in order to provide 2+2 degree programs. Other parameters regarding this issue include:
 1. Regional campuses will not be able to provide any new two-year Associate of Arts and Associate of Sciences degrees as these type of degrees would be made available at all 23 community colleges in the state.
 2. Respect and preserve the opportunity to provide high-quality low-cost education to those in underserved regions.
 3. Facilitate the establishment of bi-annual enrollment and tuition goals for this network, and leverage recommended incentives in the state subsidy formula to achieve these goals,
 4. changes to the state’s funding (SSI) distribution/model.

- The Clermont College Strategic Plan - This plan outlines goals and objectives as related to academic quality, student success, college image, resources and community engagement. Like this master plan, the strategic plan is also a
tool to help guide decision making and investment at the college. The college’s mission statement as outlined in their strategic plan is as follows: “The University of Cincinnati Clermont College embraces life-long learning in a dynamic and supportive open-access educational community that fosters intellectual, cultural, and social development.”

- University of Cincinnati budget planning assumptions - tuition rates and calculations as far as students attending classes on Clermont Campus but enrolled at the uptown campus, especially for 300 and 400 level courses.

- Where will developmental students on UC’s Uptown/main campus attend classes (Senate Bill 311 prohibits developmental students from attending main campuses).

- Demographic changes and trends in high school graduates’ needs over time.

- Although competition from nearby schools is limited in the Clermont County area, there are schools in the greater Cincinnati region that compete with Clermont College - such as Northern Kentucky University, Cincinnati State and Sinclair College in Dayton.

All of the issues outlined above will impact future programming on campus and are important to understand as future decisions are made.
3- Existing Conditions

3.1 Introduction

The following is an analysis of the existing conditions on campus. This chapter includes a review of the factors impacting the campus ranging from adjacent land uses, access, parking, circulation, accessibility, landscape and natural areas, topography, signage, lighting, site furnishings, pavement, and facilities.
3.2 Clermont College Regional Context

Located in southwest Ohio, the University of Cincinnati’s Clermont College is adjacent to the Village of Batavia in Clermont County, Ohio. The campus is approximately 25 miles east of downtown Cincinnati, Ohio. Currently, the only access to the campus is via College Drive, which connects to Main Street in Batavia. An additional connection from SR 74 to College Drive is to be constructed in summer of 2010.

State Route 32 is the main regional artery that feeds the campus via the village of Batavia. SR 222 and SR 132 (which are two lane roads) provide additional connections from surrounding areas to the Village of Batavia and College Drive’s connection to the campus. In addition, Interstate 275 provides a connection to SR 32 for those traveling from other areas in southwest Ohio and northern Kentucky.

The 92 acre campus is located at the top of a ridge formed by the river valley of the East Fork of the Little Miami River and is heavily wooded. Gently rolling terrain exists throughout the campus with steep slopes on the eastern boundary of the campus.

Figure One on the next page shows the Clermont College campus location within the Cincinnati region.
Figure One
3.3 Surrounding Area Land Use and Zoning

Future development or redevelopment of the areas surrounding the campus can impact the public infrastructure (such as roads and utilities), and how well that infrastructure meets the needs of the college. Since College Drive ultimately connects to a dead end street (Bauman Lane) the impacts of additional development on public infrastructure - such as increased vehicular traffic, should be fairly limited. However, an understanding of the future potential development is important to note as part of this plan.

The Clermont College campus is located within both Batavia Township and The village of Batavia. Most of the campus is located within Batavia Township, but the eastern edge is located within the village of Batavia. The areas within Batavia Township are zoned agricultural and industrial. The agricultural and industrial zoning regulations both have a maximum building height restriction of 40 feet.

Figure Two on the next page shows the existing land use adjacent to campus.

The existing adjacent land uses that surround the Clermont College campus include an apartment complex to the west which is zoned industrial, a state owned mental health facility (the Southwest Ohio Development Center) to the south which is zoned agricultural, several small industrial and retail businesses to the north (at the bottom of the hill fronting on College Drive - these are in the village of Batavia), a small airport and vacant land further to the west across College Drive, which is zoned industrial, as well as vacant land to the east. The vacant area to the east has very steep slopes, which would indicate that there would be challenges to developing this land.

The vacant land across College Drive near the airport comprises approximately 150 acres and is zoned industrial. According to Batavia Township’s Future Land Use Plan, the township would like to encourage industrial and commercial types of development for this area. This land fronts on College Drive and if developed, could contribute to increased traffic on College Drive. A new access road is planned for construction in 2010 that would traverse this vacant land and connect College Drive to SR 74 to the west. Assuming this new road is built, the potential impacts of new industrial development on traffic volume on College Drive and the campus area would be reduced as some of the traffic would use the new access road going to the west rather than College Drive to the east.

Based on the existing land uses and potential future land uses, there is potential for additional vehicular traffic on College Drive due to potential new industrial development occurring to the west of campus, as well as if other neighboring parcels are redeveloped into more intense uses. However, the potential new traffic is fairly limited.

3.4 Community’s Use of the Campus

Based on the mission and charter of UC Clermont to serve the community’s needs, the college has - over the years - developed a very collaborative
Figure Two

Surrounding Area Land Use

Legend

- Residential area
- Institutional area
- Commercial area
- Campus Boundary

Figure Two
relationship with the Clermont County community. The college is highly valued by the community. The result of the collaborative efforts by civic and college leaders is a mutually beneficial relationship as evidenced by facilities that are used by community groups and a college curriculum that is flexible as numerous courses are initiated or designed based on requests from community and business leaders.

3.5 Campus’ Internal Layout

The campus’ general internal layout has a series of interconnected buildings that partially encompasses a “green” open space area in the middle. Parking areas are located towards the perimeter of the campus. Wooded areas are integrated within and around the perimeter of the campus. A driveway/access road loops between the parking areas and the buildings with a drop-off circle near the campus core. There is one building that is set apart from the main campus core.

The pattern of building placement over the past ten to fifteen years appears somewhat cohesive despite each building being built independently without the guidance of an overall master plan. Most of the buildings are connected via interior hallways or built contiguous to each other, but the cohesiveness ceases with that basic interior connection. The layout of the buildings may yield interior connections, but the exterior relationships create the feel and look of one long building.

Figure three on the next page shows the access drive, parking lots and building placement.

3.6 Vehicular Access and Circulation

Access to the campus is provided at two locations. The first access point is off of College Drive on the west boundary of the campus, while the second access point is on the south side of campus via a connection Bauman Road. The connection to Bauman Road is a newly completed access driveway finished in the fall of 2009.

Vehicular circulation on campus is focused on the two lane road called Clermont College Drive that curves through campus. This access road enters campus from College Drive on the west and provides access to the three main parking lots as well as a connection to the drop off circle driveway near the core of the campus. This road loops around to the rear of campus and dead-ends. Until fall of 2009, all traffic was required to use this drive. Beginning in the fall of 2009, a new access road connecting the campus to Bauman Road on the south end of campus was completed. The intent of
Vehicular and Pedestrian Circulation and Parking

Legend
- Student Parking
- Staff Parking
- Handicapped Parking
- Building Structures
- Pedestrian Path
- Conflict Area

Campus Boundary
this new access road is to relieve the vehicular traffic back-ups that exist on Clermont College Drive at peak times. Back ups are exacerbated by cars stopping for pedestrians crossing Clermont College Drive to access parking lots on the perimeter. Truck deliveries also use the driveway into campus and take this driveway all the way to the rear of the buildings to access the loading dock area.

Three parking lots (containing almost 1,200 parking spaces) are accessed from Clermont College Drive, which contributes to congestion on this road. Increased wait times when departing a parking lot, especially if gaps in traffic are too small to allow left turns onto Clermont College Drive, are a result of all traffic being funneled to this main road. The lack of stop signs on Clermont College Drive, providing a chance for parkers to turn onto the drive due to interruptions in traffic caused by a stop sign, is also an issue.

Internal vehicular circulation was hamstrung by the fact that all traffic into and out of the campus (parking, loading, delivery, pickup/drop off) must use the Clermont College Drive two lane road to access their destination. In addition, pedestrian traffic from the west and south parking lot has to cross this road to access the campus core creating a conflict and safety issue.

The completion of a new access road from campus to Bauman Road to the south – in September 2009, will ease congestion on Clermont College Drive increasing the safety for drivers and pedestrians. Figure Three on the previous page outlines parking lot locations.
3.7 Parking

Parking on campus is contained in five surface parking lots. Figure Three on the previous page identifies the location and capacity of each parking lot. Two of the lots are located on the interior section of the campus, which require a walk of about two to three minutes to the main campus core, while the remaining three lots are towards the perimeter of campus – near the Student Activities Building - requiring a walk to the campus core of around five minutes, depending on where someone parks in that lot. There are a total of 1,424 parking spaces within these five parking lots. The capacity and details about each of the parking lots is as follows:

West Lot

The west parking lot contains 329 student parking spaces and 19 staff/faculty parking spaces. While the lot is surrounded by wooded green space, it is a large impervious asphalt lot with only one tree offering any shade. This lot is accessed via one driveway from the Clermont College Drive access road. The lack of landscaping and tree canopy within the lot detracts from the aesthetics of the lot. An additional issue related to this parking lot is the difficulty departing this lot at peak times- as approaching traffic does not have to stop at the parking lot driveway- restricting the number of gaps in traffic that allow safe turning movements.

East Lot

The east parking lot contains 356 student parking spaces, 172 faculty/staff parking spaces and 24 handicap parking spaces. The lot has a one-way in and out traffic pattern at the terminus of the Clermont College Drive access road. This lot

The West parking lot.

Provision of convenient motorcycle parking in the east parking lot is part of the campus’ sustainability initiatives related to reducing carbon emissions.
contains a series of landscape islands on
the west edge providing an aesthetic
enhancement as well as a safe
connection route for pedestrians to walk
within the lot. However, concern
regarding tree species (ash trees) in the
landscape islands makes future
replacement a possibility (due to Emerald
Ash Borer). In addition, the burning bush
and juniper trees in these islands are
weak and there is no irrigation system
linked to the landscape islands, which
further strains the vegetation during hot
weather.

Furthermore, the landscape island curbs’
deteriorating and the red maples
within these islands are declining due to
years of soil contamination from salt,
compaction to roots, and scorching of
foliage from reflective heat.

South Lot

The south parking lot contains 292
student parking spaces and two handicap
parking spaces. This lot has two
driveways accessing the Clermont
College Drive and a connection to
Bauman Road to the south via the new
access drive constructed in 2009. There
are landscape islands that provide
aesthetic relief and some shade for this
lot.

New Surface Lots Constructed in
Summer of 2009

Two surface lots were constructed in the
summer of 2009 that contain a total of
220 parking spaces. These are located on
the south end of campus and are
accessed from the new entry drive that
connects to Bauman Road. These lots
were constructed of a “tar and chip”
material on top of a standard gravel base,
which is an economical means to build
surface parking lots. These lots could be upgraded and paved with asphalt if funds are identified in the future.

3.8 Parking Lot Use Data

According to input received at group input sessions, there is a lack of parking at peak times. Data gathered during the fall 2008 quarter, regarding overall parking demand is as follows. During the third day of classes (at 11 am on Monday) there were nine vacant student parking spaces (99.1% were used) and three vacant staff spaces (98% were used). On the fifth day of classes at 11 am (Wednesday) there were 46 vacant student spaces (95% were used) and 13 vacant faculty spaces (92% were being used). Also, the gravel lot had 12 cars (24% were being used) on the fifth day of classes.

Basically, the east, south and west parking lots functioned at full capacity during peak times in September 2008. The enrollment during this fall 2008 period (when the parking counts were conducted) was a head count of 3,241 students. As of October 2009, the additional surface parking constructed in the summer of 2009 seems to be accommodating the 14.8% increase in enrollment that occurred between fall 2008 and fall 2009 as the parking supply seems to be handling the traffic flow for fall 2009 quarter.

3.9 Service and Delivery Access

There are two loading/delivery areas which are located in the rear of the Edith Peters Jones and Snyder buildings. These
service areas are located such that they require delivery trucks to travel through several pedestrian crossings along the Clermont College Drive route as students walk from parking lots to the center of campus.

The first loading area has an actual loading dock and is located at the rear of the Snyder Building. This loading dock receives most of the general deliveries to the college and is on the 1st floor level of the building.

An additional loading area is provided via two back doors at the rear of the Edith Peters Jones Building, but there is not an actual loading dock. One of these two doors provides direct access to the dining services/café area while the other door accesses a hallway. Both of these doors are located on the lower level (basement level) of that building.

There are several issues/constraints regarding getting deliveries to the bookstore and library as their deliveries have to be carted through the halls and or up/down an elevator from either loading area.

3.10 Pedestrian Circulation

Pedestrian circulation within the campus is focused on connections to and from the parking lots to the core campus area in the front of the college, as well as within the central core as people traverse between buildings. Figure Three (on page nine) outlines pedestrian circulation routes.

Several pedestrian routes require crossing the main access road (Clermont College Drive) or traveling through the parking lot itself to exit the parking lot on foot. The west and south lots require
crossing Clermont College Drive, which means that almost 800 pedestrians (over 800 parking spots) are crossing the road. However, crosswalks are painted across the access drive providing a clear crossing points.

The pedestrian routes within each parking lot are limited. The east lot has landscaped islands that are positioned to form a safe pathway for pedestrians through the parking lot. This path is also used by those parking in the south lot, as well as a portion of those using the east lot. The west lot does not have any clear pedestrian route within the parking lot. Sidewalks do not exist for pedestrian use along Clermont College Drive.

It was mentioned in several of the group input sessions that people like to walk around the campus for exercise. Some portions of this route include areas that are safer for pedestrians, while other portions of the route include areas that are less safe for pedestrians in terms of potential vehicular conflicts. In addition, the lack of sidewalks along Clermont College Drive creates a safety issue if people walk along the shoulder of the road.

3.11 Accessibility for Persons with Disabilities

The campus has a total of 23 handicap parking spaces; 21 in the east lot and two in the south lot. The number of handicapped parking spaces required is
based on the total number of parking spaces provided. The current 23 handicapped spaces meet the requirements based on the current total of 1,191 parking spaces on campus. If additional parking is built, then additional handicapped spaces would be required.

The east lot provides the easiest route to access campus buildings from the handicapped spaces. Handicapped spaces exist along the existing sidewalk adjacent to the rear of the Educational Services Building and in the first two rows of the main field of parking near the northwest corner of this lot by the crosswalk. Students can access the rear door or the front door of the Educational Services Building from those spaces. There are two more spaces behind the Snyder Building. The two spaces by the front door of the SAC building are typically used for that building as it is a significant walk to the campus core.

All campus buildings have at least one exterior door with handicap button or automatic door opener that makes access feasible for disabled persons. Access within buildings and around the campus core seems to be appropriate as the slopes are flat on the sidewalks in the front of the buildings facing the campus core. In addition, each building with more than one floor has at least one elevator, except West Woods, but connections on each floor from the Edith Peter Jones building are available to access West Woods.

Several restroom doors do not have push button operations to allow for easy access for disabled persons. This should be addressed as buildings are renovated or as a separate project.

Access for disabled persons from the West lot is not feasible due to the fairly steep slope of the sidewalk between the parking lot and the campus area and due to a road crossing and the significant distance from the parking lot to the campus core. Any new handicapped parking areas would most likely be located near the buildings, as part of the East parking lot.

3.12 Recreational Opportunities

Recreational opportunities on campus range from basketball, volleyball and weight lifting in the SAC building to ping pong, billiards and a piano in the student lounge. In addition, the wooded setting of the campus offers a pleasant view as people walk around campus for exercise. However, the walkers do not have a dedicated safe walking route on trails or when negotiating their way through the...
various parking lots or roads around campus.

In addition, the college offers six collegiate level sports programs including men’s and women’s basketball, women’s softball, men’s baseball, men’s golf and women’s volleyball. Games or matches for these sports are played in the SAC building or in facilities in the surrounding community.

3.13 Natural Features and Site Analysis

The landscape of the Clermont College campus includes undisturbed wooded areas, selectively managed timber lots, highly cultivated lawns and foundation plantings. A core campus green space is in the front of the main set of buildings while the perimeter of campus is heavily wooded. An open grassy area that has gentle slopes exists east of the SAC

Students using the Student Activity Center (SAC) building – basketball court.

Recreational opportunities on campus as shown above and to the left include ping pong, pool and piano.
The east edge and north edge of the campus is heavily wooded with steep slopes. The woodlot in the middle of the campus is bounded on its south, east, and west edges by parking and the main campus drive, with buildings and lawn areas to its north. A creek runs along the eastern boundary of the campus as shown in the pictures on the lower left.

The campus’ open space, lawn and turf areas and tree populations are in weak condition due to the lack of an irrigation system providing convenient hydration during periods of extended dry weather. In addition, the languished appearance of the landscape is related to species selection (i.e., red maples in the parking lot, black gum in the central campus green space) and the inability to perform necessary maintenance functions. Related to this, it is important to balance the planting of sustainable species with maintenance requirements to direct resources appropriately to maintain the landscape effectively.

The existing floral installations (perennial and annual) add seasonal “splashes” of color to the landscape. Currently there are several floral beds located at both prominent campus features (flag plaza and sign wall), and at building entrances. These floral areas have plants compatible for their location. For example, shade plants such as hostas are companion planted, while geraniums and petunias fill the sun exposed flower beds. These plantings add a colorful accent to the landscape, however, they require considerable maintenance such as watering, fertilizing, removing “spent” flowers, mulching, and annual replanting.
The formal green that serves as the front door of campus can now benefit from an irrigation system installed in the summer of 2009.

As the topographic map (Figure Four) and site analysis drawings (Figure Five) show on the next two pages, the campus can logically support additional buildings in the middle and southern portion of campus as the slopes are gentle and the quality of the wooded area is marginal due to the prevalence of Ash trees. However, the northern and eastern perimeter areas contain severely steep slopes with high quality wooded areas and are not as suitable for intense development.

3.14 Signage and UC Branding

The current system of signage consists of ODOT, billboard, Village of Batavia, generic regulatory and branded university standard signs and banners. The typology, sizes, and forms reflect an inconsistent appearance.

Beginning a few miles west of campus on State Route 32, the first sign identifying the campus exit and distance is introduced. This is a green/white ODOT
Figure Four

This topographic map is from 1995, but it shows that the perimeter of campus on the northern and eastern edges contain very steep slopes while the central and southern portion of campus has more gentle slopes and is better suited to support additional development.
Site Analysis and Natural Features

LEGEND

- **High Quality Wooded Area**
- **Marginal Wooded Area**
- **Open Field**
- **Formal Green Area**
- **Marsh**
- **Existing Building**
- **Creek**
- **Drainage Pattern**
- **Views**
- **Steep Slope**
- **Gentle Slope**
- **Slopes 5% or less**
- **Slopes greater than 5%**
- **Campus Boundary**
- **Gas line easement**

Figure Five
sign. In addition, an advertising billboard reinforces Clermont College’s presence.

At the exit ramp from SR 32, a Village of Batavia sign is illuminated and landscaped and has UC Clermont College text. The sign has no recognizable university branded element, and it appears that it is owned by the Village of Batavia and used to promote Clermont College events. The landscape that surrounds the sign is a mixed collection of assorted perennials (mostly daylilies). The planting had a “tired” appearance when this analysis was conducted in September 2008. One additional directional sign exists at this exit. The sign is a non-descript green/white and mounted on rusted metal posts and cross-bars and appears to be an ODOT sign.

There is no additional signage as one proceeds up College Drive, until arrival at Clermont College Drive. The sign at this intersection is university branded and was installed in 2006. The sign’s proportion is appropriate as it “stands” above the surrounding guardrail. The sign is internally illuminated and landscaped at its base. The guardrail in front of the sign is a steel highway standard type (I-beam and timber support).

Along Clermont College Drive, light poles mounted with welcoming banners greet visitors. The banners are branded, but the floral image suggests a seasonal (spring/summer) theme and therefore appear outdated for fall timeframe of this analysis.

The existing building signage and maps on campus are university standard and reinforce the college’s identity/brand.
3.15 Lighting

The campus exterior site lighting demonstrates both consistency and inconsistency in fixture type and application. Ideally, lighting should follow a consistent pattern, even as new construction occurs, in order to achieve a cohesive appearance on campus.

All existing street and parking lot lights are box types providing an organized quality for this type of light. However, pedestrian areas are comprised of various fixture types featuring three distinct bollard styles and two varieties of sidewalk lights (box and disc fixtures). In addition, the light pole heights differ on several pedestrian paths.

Interior lighting fixtures are also inconsistent, specifically the recessed ceiling, wall and indirect fixtures are different in every building. However, most of the overhead lights are a standard size.

Landscaped sign wall at the campus’ front drop-off circle.

Signage and banners along Clermont College Drive as one enters campus from the west.
3.16 Site Furnishings

The Clermont College campus contains a mixed, unrelated composition of site furniture. Metal wire mesh and wooden benches co-exist along with concrete trash and ash receptacles. Simulated (plastic) terra cotta pots and wooden picnic tables also exist on campus. While the concrete trash containers are functional, their design is obsolete. These fixtures, along with the previously mentioned signage and lighting inconsistencies, create a somewhat disparate appearance on the campus.

3.17 Pavement

Virtually all campus hardscape surfaces are concrete or asphalt, with the exception of the flag plaza in the central green area. Most surfaces are in good condition with only a few areas of concrete requiring repair or replacement, most notably, the plaza in front of the Snyder Building. However, the finishing and tooling techniques (floated or broomed) and control joint detailing are inconsistent.

3.18 Buildings/Facilities

The existing buildings at Clermont College are grouped around a central core open space or “green.” Most buildings are two stories tall and constructed predominantly with dark brown brick exteriors. As the campus grew over the past several decades, some of the buildings were connected to existing buildings when they were constructed forming a larger “super building.” Figure Six on page 3-27 shows an aerial perspective of the super building.
The above photos show examples of inconsistent site furniture installations and different patterns of concrete finishing patterns.
Education Services Building

The Education Services Building was completed in 2000 and has brick and large glass windows as part of the facade. This building has 25,000 net square feet within the two story structure with 18,336 square feet being assignable/usable square footage. The functions within this building are primarily classrooms (6), teaching labs (6) and faculty offices. Minimal upgrades to meet building codes would be needed for expansion of this building.

Edith Peters Jones Building

The Edith Peters Jones Building was completed in 1972 and was the first building to be built on campus. This three story building has a brick and concrete exterior facade and has 68,500 net square feet with 50,000 assignable/usable square footage. The functions within this building are primarily classrooms (8), teaching labs (13) and faculty offices. There are significant issues if this building were to be added onto or renovated, as upgrades would be required to bring the building into compliance with current building codes, which would add cost and time to any associated expansions.

Student Activities Center

The Student Activities Center is a one story structure that is has an aluminum/metal shell with plastic forming the exterior walls. The assignable square footage of this structure is 13,300. The functions inside are recreation, athletic and event related – being the basketball and volleyball courts, weight room, and small locker rooms as well as an area for larger campus events. The remaining life of the exterior fabric on this structure is approximately ten years as this building
Inventory and Analysis

1. West Woods Academic Center
 Class Rooms
 Offices

2. Edith Peter-Jones Building
 Student Lounge
 Cafe
 Offices
 Classrooms

3. Facilities Management
 Facilities Garage/ Shop

4. Snyder Building
 Administrative Office
 Classrooms

5. Educational Services Building
 Classrooms
 Labs
 Faculty Offices

6. Student Services Building
 Classrooms
 Administrative Office

7. Student Activities Center
 Recreation
 Classrooms
was used on main campus for several years prior to being moved to the Clermont Campus.

Snyder Addition

The Snyder Addition Building was completed in 1991 and has brick and small glass windows on the facade. This building has 50,600 net square feet within the two story structure with 34,400 square feet being assignable/usable square footage. The functions within this building are primarily classrooms (3), teaching labs (16) and faculty offices. There are significant issues if this building were to be added onto or renovated, as upgrades would be required to bring the building into compliance with current building codes which would add cost and time to any associate expansions.

Student Services Building

The Student Services Building was completed in 2000. This two story building has brick and larger glass windows on its façade. Inside, the building has 15,300 net square feet with 10,200 assignable/usable square footage in its classrooms (6) and administrative offices. Minimal upgrades to meet building codes would be needed for expansion of this building.

West Woods Building

The West Woods Building is the most recent addition to the campus and was completed in 2006. This two story building has brick and large glass windows on its façade. This building contains 14,600 net square feet with 8,200 square feet being assignable/usable square footage. The functions within this building are classrooms (6) and faculty offices. While all of the other buildings on campus have doors for entry into the building from the outside, this
Facilities Management Building

The Facilities Management Building was completed in 2002. This one story, windowless building has a brick façade and has 1,300 net square feet and 1,300 assignable/usable square footage. The functions within this building are a workshop and garage space for the facilities department.

Park 50 Leased Space

This leased space is 6,366 net square feet on the first floor of a larger office building. This building is located in the Park 50 office park near Milford, Ohio. The space has four classrooms of about 1,000 sf each, plus several administrative offices, a conference room and a lounge area.

The Oaks Leased Space

Clermont College also uses approximately 1,000 sf of space in the Live Oaks Vocational School in Miami Township for the police academy program.
3.19 Summary of Input from Constituent Meetings

This section outlines the comments and suggestions heard during the constituent input meetings regarding issues and concerns that the participants mentioned.

Quality of Life Elements
- More food options/choices desired.
- More recreation options - gym, walking trails, weights, sports fields and other recreational sports.
- Wellness center with student lounge area.
- Commons area with lounge for staff - for between classes and due to younger demographics of student population.
- Something like Tangeman University Center.
- More microwaves in the existing student lounge area.
- Improved layout of Cougar Café to reduce wait times.
- Daycare facility for use by parents/students.

Safety Elements
- More sprinklers in buildings.
- Emergency communication system.
- First aid/nursing/health clinic facilities.
- More emergency drills.
- Traffic light at intersection of College Drive and Clermont College Drive.
- Traffic light at the Main Street and College Drive intersection in Batavia.
- Additional access roads to campus.
- Public safety offices expanded and located appropriately.
• Improved coordination of and maintenance of the hill on College Drive.
• Additional public safety resources needed if a parking garage or expansion of campus occurs.
• Dispatch of police, ambulance and fire emergency services via 911 calls.

Classroom, Lab and Teaching Space Suggestions
• Need biology lab space.
• Need more classrooms.
• Resources in classrooms should be flexible - furniture should be flexible, whiteboards, chalkboards, screens and other media, with some natural light/ windows, with wireless and electrical outlets.
• Screens should not block view of boards.
• Improved acoustics in classrooms as the projectors are too loud.
• Re-programming of classroom doors so they are unlocked for the first few minutes of class.
• Have both whiteboards and chalkboards available.
• Use classrooms and facilities on the weekend
• Training room is needed.
• Need CAD lab.
• Auditorium upgrades (tech. and lighting etc.) or a new auditorium/performing arts facility.
• Place telephones in classrooms.
• Classrooms with computers rather than computer labs.
• Classrooms with electrical wiring for laptop use during class.

• SynchronEyes software in classrooms.

Educational Resources
• Learning commons proposal as submitted by the library.
• Library needs more office space, better security system, more collections’ space.
• More computers.
• Provide a network printer in student lounge.
• More group study rooms.
• Expanded learning center facility.
• Outdoor teaching space/amphitheatre.
• More space for the bookstore.
• More space for educational placement testing.
• Create a career planning/placement office.
• Create a “one stop” student service area.
• Renovated or new theatre.
• More study areas.
• Centralized location for learning center and library.
• Place/space for students to practice presentations (practice using technology).
• If athletics grows, need staff and facilities to meet NAIA conference requirements.
• Joint facility for athletes and students for recreational sports and weights.
• Need athletics’ support facilities.
• Need running track with grass infield for soccer/intramurals.
• Rack mounted computer work stations.
• Mini-business area as part of Park 50 training classes (phone, fax, email, printer) for attendees to use.
• Park 50 would like a counter area with cabinets underneath for catering/food.

Campus Planning Elements

• Balance growth/new facilities with natural setting.
• Resolve bottleneck at curve with pedestrian crossing - cars stop for pedestrians at peak times and the queue of cars backs up.
• Add stop signs at intersections between access driveway and parking lots to ease traffic flow.
• New access road to the campus.
• Increase visibility of campus from State Route 32.
• Create a focal point/front door as one approaches from the west parking lot.
• Create a 24 hour sense of place.
• Utilize environmentally sensitive design - LEED in new facilities.
• Building and interior layout that encourages faculty collaboration.
• Create a side door - landscaping or colonnade/focal point as one approaches from the east parking lot.
• Determine the maximum carrying capacity of the campus that balances growth with the setting.
• Create a coordinated architectural style.
• Create a focal point/some sort of quad in the front.
• Build up instead of out.
• Utilize the land at the bottom of the hill.
• Add turn lanes at end of driveway at College Drive.
• Use underground parking concept.
• Add sidewalks along roads and driveways.

• Add more handicap parking spots.
• Better coordination of building size, massing, placement/relationship to other buildings and resultant interior and exterior connections focused around a possible quad.
• Add ground floor connection between Snyder and the Educational Services buildings.
• The master plan should balance the existing advantages of Clermont College (small classes and rural atmosphere) with any growth.
• Account for future adjacent land uses that may be developed surrounding the campus and how that impacts the college and the public infrastructure.
• Possibly add dormitories if structure of university evolves to four year programs.
• Create a framework that outlines the projected needs and solutions for provision of space.

Office Space Needs

• Faculty office space is needed. What office organizational model - organized by department or scattered?
• On-line/distance learning support needs an office. Facilities department needs an office.
• Admissions and student services need more offices for advisors at peak times.
• Educational Talent Search and Upward Bound programs need offices.
• Educational Opportunities Center needs space.
• ROTC - needs storage space if it uses the woods for training.
• Supplemental Instruction pilot program- needs space.
• Student organizations need space.
• Mailroom needs more space.
• Public Safety office needs space.
• IT needs more storage space and a workroom, central server room.
• Volunteer Income Tax Assistance program needs space.
• College Relations department needs a workroom.
• Upgraded finishes in offices.
• Some office areas need to be able to accommodate parents that have babies with them.

Academics

• Retain the long term flexibility to adapt programs to the community’s needs.
• Add sports management classes.
• Offer more bachelor’s degrees so students don’t have to go to main campus.
• Capability to offer the same degrees as the main campus.
• Provide a mix of programs to match the demographic needs of the area.
• Don’t lose sight of the two year programming that provides a core service to the area.
• Collaborate with Clermont Mercy Hospital for health related classes.
• Add more on-line courses.
• Add more night classes.
• Add more Friday and Saturday classes.
• Criminal Justice and Police Academy need their own facility/space with forensics lab, shooting range, driving course etc.
• Criminal Justice, Allied Health department needs more space.

Other Items

• Need more storage space.
• Upgraded HVAC that is quieter.
• Need more parking.
• Shuttle service to main campus.
• Metro bus connection to Eastgate.
• Upgraded finishes in classrooms.
• Solid waste recycling center.
• Irrigation system.
• Garage/storage area for facilities’ equipment.
• Better coordination of campus closures due to weather - as the weather can vary between campuses.
• Landscaping/screening of apartments along driveway into campus.
• Human Resources representative on campus.
• Choose tile color and grout color that is easier to clean in bathrooms; use terrazzo floors and solid counters - they last longer.
• Standardization of paper towel dispensers and light fixtures across all buildings on campus would be more efficient for maintenance crew.
• For energy savings - add florescent lights, hands free faucets/dryers/urinals, motion sensors on lights.
• Need salt storage area.
• New door thresholds.
• Larger safe haven areas for tornado situations.
• Facilities needs a lift to replace out of reach light bulbs; needs a loading dock fork lift.
• Add push button doors on bathrooms – ADA.
• Bearcat card be useable on campus.
• Financial aid person on campus.
• Loading dock congestion.
• Existing IT node rooms need HVAC.
• Improved cell phone coverage on campus.
• Increased “storage access network.”
• Scheduling screens in hallways.
• Shuttle service.
• Restrooms - need place to hang coat and put bags down, baby changing areas, full length mirrors and designs to better address sight lines into the bathroom.
• The Student Services Building needs better insulation to prevent sound transfer between rooms.

3.20 Summary of Input from Nearby Governmental Entities

Meetings were held to gather input and ideas from the following governmental entities:

• Batavia Township
• Village of Batavia
• Clermont County Administration
• Economic Development Corporation of Clermont County

The governmental entities were all supportive of the college and felt that it was a highly valued amenity to them and the residents and businesses in the area. They were glad we had included them in our planning process and all agreed that future meetings should be conducted periodically to help collaborate on future issues.
Chapter 4:
Goals and Objectives
4- Goals and Objectives

The following goals and objectives/policies include those recognized by the University of Cincinnati as institutional imperatives and those that are more specifically related to Clermont College as it addresses future growth. The goals and objectives are drawn from input from campus constituents as well as observations of the planning and college staff.

It is important to recognize that the timetable for implementation of these goals and policies corresponds to prioritization by the college and available funding. The following text includes goals numbered and in bold print; while objectives/policies are outlined below each goal.

4.1 State of Ohio and University of Cincinnati Goals

1) **Implement the University System of Ohio goals as outlined in Senate Bill 311.**

Accommodate new students whose educational pathway might shift to flow through Clermont College and any new programs or degrees that are shifted or expanded as part of supporting those students.

2) **Create an environment that reinforces the mission of the college and its accompanying strategic plan.**

Create a campus master plan that supports and helps implement the college’s strategic plan - as the strategic plan encompasses strategies to achieve academic programming goals.

3) **Establish an image for the college that reflects its local and regional importance.**

Utilize UC branding elements to reflect the appropriate image.

4) **Promote the development of a functional and attractive college campus.**

Enhance the effectiveness and attractiveness of the campus through the implementation of the recommendations outlined in this master plan.

4.2 UC Clermont College Goals

1) **Balance the campus’ resources with the need to accommodate growth.**

Develop a campus master plan that will guide the immediate, short-term and long-term growth of the college campus through a responsible use of financial, physical and natural resources.

2) **Unify and integrate campus development.**

Improve signage and wayfinding systems, including mapping, signage on buildings, directional and regulatory signage throughout campus and on roads near campus.

Identify and develop new pedestrian and vehicular circulation patterns and routes that improve existing conditions and address future needs.

Develop parking areas that combine convenience, sustainability and
landscaping within an effective vehicular and pedestrian service network.

Enhance pedestrian connections between parking lots, buildings and within the open space areas to create safe and well lit routes.

Provide adequate and convenient parking for those with disabilities.

Improve safety associated with vehicular/pedestrian conflict points by creating new walk and roadway routes.

Establish a clear sense of entry and arrival to the campus by considering the construction of a new gatewall in a prominent location.

Identify future building sites that are flexible as well as compatible with future pedestrian and vehicular routes.

Provide seamless architectural and open space connections by improving the existing walks, plazas, landscaped areas and architectural details that reinforce visual and physical connections.

Enhance and or define buildings and their entrances with walkways, signage, lighting, furnishings and landscaping.

Introduce a palette of materials for elements such as lights, site furnishings and landscaping that can be interchangeably used to reinforce uniformity and identity.

Identify potential options to improve the efficiency in the use of and versatility of existing campus facilities.

3) Improve quality of campus facilities, resources and overall environment through a commitment to design principles, standards and strategies.

Create design guidelines for signage, landscaping, pedestrian scale lighting, site furniture and other exterior elements to enhance cohesiveness of the campus.

Establish architectural, landscape and engineering design standards that will compatibly link existing and newly proposed buildings and open spaces.

Construct academic facilities to meet the needs of the academic and strategic plans.

Continue to meet or exceed requirements regarding ADA accessibility to all existing buildings, any new buildings, parking areas and other areas of campus.

Maintain and enhance the accessible character and use of the campus by preserving and or improving open space areas, incorporating sustainably influenced green space around buildings and utilizing design principles that sensitively respond to the pedestrian experience.

Provide accessible outdoor spaces.

Make visitors access to a centrally located campus service and visitor’s center easily identifiable.

Design buildings and open spaces ergonomically to encourage comfortable informal and formal gatherings.

Use natural and or topographic features such as berms, landforms, trees and shrubs to help separate, buffer and screen conflicting uses and undesirable views.

Utilize a variety of durable native plants that will flourish with minimal maintenance. Include evergreens and deciduous trees, shrubs and perennials to add seasonal interest.
Create an overall landscape, environmental and or timber management plan for the campus. This could include selectively incorporating irrigation into high visibility, high maintenance landscape areas.

Upgrade HVAC systems to improve efficiency and to reduce noise levels inside buildings.

Upgrade bathroom access by incorporating ADA compliant push button door operation.

Create two universal/family style ADA accessible restrooms on campus.

Design restrooms to include a place to accommodate coats and bags, a baby changing area, full length mirror and improved privacy.

Add scheduling screens in hallways for enhanced communication between administration and staff, students and visitors.

4) **Strive to reduce the campus’ carbon footprint and energy consumption, while increasing sustainable design initiatives on campus.**

Implement sustainable design strategies for new buildings, renovations of or additions to existing buildings and as appropriate throughout campus to reduce energy consumption. This could include geo-thermal wells to provide heating and cooling to any new buildings.

Implement sustainable construction compliance as introduced by the United States Green Building Council (USGBC) to reduce the inefficient resource utilization.

Implement USGBC/LEED (Leadership in Energy and Environmental Design) sustainability standards for new construction.

Where possible, implement Light Imprint guidelines for storm water management. These design strategies minimize stormwater runoff.

Implement other sustainable design techniques regarding "green roofs, water use reduction, lighting, heating and cooling, and landscaping to help reduce energy usage and preserve natural resources.

Implement a campus recycling program.

Implement additional energy savings strategies such as florescent lights, motion sensors and others as appropriate.

5) **Continue to strengthen linkages with the surrounding community and UC’s main campus.**

Continue to encourage use of the college’s facilities by the surrounding community.

Continue to enhance relationships with nearby local governmental entities, business groups and neighboring entities.

Explore opportunities for flexible facility utilization that could be shared by the campus and the community.

Provide transportation and programmatic connections to link the campus to surrounding areas.

Provide well maintained, inviting and branded entrances to campus for visitors, students and staff.

Provide shuttle bus service from the Clermont campus to the main campus and or other surrounding communities.
Facilitate possible mass transit connection from campus to the Metro stop at Eastgate and also connections via the Clermont Transit Connection.

Provide enhanced connections to the main campus’ Human Resources and Financial Aid Departments by providing representatives on campus.

6) **Create an academic programming framework that will achieve the collective goals of Clermont College, The University of Cincinnati, and The State of Ohio as well as enhancing the coordination of programs/degrees offered between UC’s main campus and the Clermont Campus.**

Retain the ability to adapt programs offered to meet the academic and demographic needs of Clermont County and the surrounding region as well as any academic programming priorities identified by the college.

Expand baccalaureate and or associate degree program offerings in selected areas in compliance with the University System of Ohio’s goals as outlined in Senate Bill 311.

Add more on-line, evening and weekend courses or other flexible options to deliver courses to students.

7) **Enhance the quality of life elements on campus to meet the current and future needs of students, staff and faculty.**

Expand food service choices and products.

Improve the layout of the existing Cougar Café to reduce service delays.

Create more recreational options such as a gym/fitness/wellness facility, walking trails, weight room, sports fields and other casual activities as desired.

Create a college commons area that provides an “informal” place for students, staff and faculty for casual and planned activities.

Create lounge areas for staff and faculty.

Provide more microwaves in the existing student lounge area.

Establish a daycare facility specifically for use by students, staff and faculty with children.

Facilitate improved cell phone coverage on campus.

8) **Provide a safe campus environment for students, staff and visitors.**

Improve safety measures in buildings and open spaces to include sprinklers, help phones and an emergency communication system.

Provide a first aid/nursing/health clinic facility for students and staff.

Conduct periodic emergency drills.

Work with government officials about the possibility of the installation of a traffic light at the intersection of Clermont College Drive and College Drive as well as a traffic light at the Main Street and College Drive intersection in the village of Batavia.

Expand and strategically locate the Public Safety office.

Seek improved coordination of and maintenance of the hill on College Drive with county and village transportation departments during inclement weather.
Facilitate the resolution of the dispatch of police, ambulance and fire emergency services to the Clermont campus (calls from campus phones go to Clifton first).

Ensure tornado safe zones have appropriate and visible signage.

9) **Enhance existing classrooms, labs and teaching spaces to meet new and evolving needs of students, teachers as well as pedagogical goals to provide the best teaching environment possible.**

Provide flexible resources in classrooms – including, but not limited to – furniture, desks, tables, whiteboards, chalkboards, screens and other technology/media including telephones.

Design teaching spaces with natural light penetration.

Outfit teaching spaces with up to date technological capabilities.

Improve classroom acoustics and or install quieter electronic equipment (i.e. projectors) to minimize noise levels.

10) **Enhance existing resources and provide new educational resources to ensure the best learning environment possible.**

Implement a learning commons concept.

Create more space for library functions-office, security system, and collections - and consider a more central location.

Create a training room.

Identify the best locations for the various educational resources elements and establish a plan for relocation of these entities to the best location over time.

Upgrade the existing auditorium’s technological capabilities and lighting etc. or create a new auditorium/performing arts facility on campus.

Create more group study rooms.

Expand the existing learning center facility.

Create an outdoor teaching space such as an amphitheatre.

Expand space for the bookstore.

Create new or provide additional space for the Educational Placement Testing Center.

Create a career planning/placement office.

Create a “one stop” student service area.

Create more open lounge style study areas.

Create a place for students to practice presentations (practice using technology).

Prepare a plan to accommodate the NAIA Conference Athletic Standards should Clermont College become a member.

Develop a joint use recreation facility that accommodates both students and student athletes.

Provide a “mini-business” (phone, fax, email, printer) area as part of off-site training classes (either at existing Park 50 space or as part of any new space options considered to replace Park 50) for attendees to use.

11) **Enhance the physical layout, framework and safety of the campus through planning and design.**

Resolve pedestrian/vehicle conflict points at conflict locations (i.e. crosswalk at curve) in a safe and efficient manner.
Add stop signs at intersections between Clermont College Drive and the west parking lot to ease traffic flow and allow for those exiting the parking lot to enter the drive.

Consider the development of a campus gateway element/sign wall that identifies arrival and drop-off pick-up location.

Establish a sense of place by promoting a coherent and consistent system of building and open space standards.

Utilize environmentally responsible design - (LEED guidelines for new buildings) in new facilities.

Utilize landscaping or a built structure to identify the entrance to campus from the east parking lot.

Acknowledge the existing architectural style and use as a reference/influence for the design of new buildings.

To improve safety and to facilitate connections, consider the introduction of additional sidewalks along roads and or other connecting routes.

Re develop and or expand the existing campus core to enhance current and future building placement creating an enhanced quadrangle.

Account for future land development that may be developed surrounding the campus and how that could impact the college and the public infrastructure.

Develop a cohesive and flexible master plan that establishes the framework for current and long-term college needs.

12) Create additional space and or provide flexible space for priority needs.

Identify possible spaces that may be inefficiently used, or programs that may be consolidated or eliminated to make better use of limited space resources.

When building or renovating space, try to create the potential for flexibility in the use of the space as the college’s needs change over time.

Identify the top priorities for use of space, such as space needs “directly related” to credit hour activity or other priorities as determined by the college.

The following programs have been identified (via the group input process/meetings) as requiring office, teaching or other space. However, prioritization of needs by the college must be completed before allocation of space:

- Academic Affairs
- Faculty office space
- On-line/distance learning program
- Facilities department
- Admissions and student services need more offices for advisors at peak times
- Educational Talent Search and Upward Bound programs need offices
- Educational Opportunities Center needs space
- Supplemental Instruction – pilot program- needs space
- Student organizations need space
- Mailroom needs more space
- Public Safety office needs space
- IT needs more storage space and a workroom, central server room
- Volunteer Income Tax Assistance program needs space
- College Relations department needs a workroom and storage space
- ROTC needs storage space if it uses the woods for training
If new buildings are constructed and programs are relocated, assemble an inventory of available spaces and compatibly match space and program for potential new occupants.

Create additional garage/storage area for facilities' equipment.

Develop spaces within office reception areas to accommodate parent/infant interaction such as breastfeeding to provide privacy for mother/infant needs.

13) **Maximize efficiency and maintenance of campus facilities operations**

Choose tile color and grout color that is easy to clean. Consider terrazzo floors and solid counters for their durability, but evaluate life cycle cost (up front and maintenance) before making selections.

Implement standardization of fixtures and dispensers and other equipment in order to improve maintenance efficiency. Coordination between newly proposed and existing buildings will be required.

Allocate resources as needed for large equipment purchases.
Chapter 5: Space and Parking Data and Analysis
5- Space and Parking Data Analysis

5.1 Introduction

The methodology for evaluating space use and needs in higher education is complex, however, analytical methods provide a systematic means for evaluation of space. Detailed data was provided by the college to a space planning consultant so that the appropriate analytical process for a commuter based branch campus could be conducted.

This chapter outlines the space planning analysis and recommendations prepared by the consulting firm Comprehensive Facilities Planning, Inc. (CFP). This firm was retained to perform the documentation of existing use of space, research future space needs and provide analysis and recommendations of projected space needs—by type of space—for the Clermont College campus. The first component of this chapter outlines the planning assumptions used for the analysis with subsequent sections providing further analysis and recommendations of space needs by each type of space as well as specific details about classroom and laboratory space needs.

Analysis of the future parking needs is outlined in the last section of this chapter.

5.2 General Space Planning Assumptions

The following general planning assumptions were developed from direction provided by UC Clermont College. These planning assumptions provide guiding principles, which are critical in the formulation of the results of this study.

The basic data used in this study were provided by the Planning, Design and Construction department of the Division of Administration and Finance. Databases received include the space inventory, list of personnel, class schedule, enrollment data and credit hour data. Fall 2008 was used as the baseline for this study.

This study is limited to space and administrative/academic units located on the Batavia, Ohio campus including the Park 50 facility of leased space. Building support facilities (i.e., mechanical rooms, corridors, etc.) are not part of the scope of this study.

5.3 Detailed Space Planning Assumptions

Fall term 2008 serves as the base year for enrollment changes.

An across the board enrollment growth rate of 5% per year and a ten year planning period has been applied for this analysis.

The primary focus of this analysis is on the quantity of space by type and its use. Although only noted as it may impact the space needs, physical condition and functional quality issues have not been assessed as part of the analysis.
The space needs calculations are based on nationally recognized space planning guidelines and the applied experience of the CFP consultants. A compendium of space guidelines used by several states (Ohio, Texas, Florida, Georgia, Pennsylvania, South Carolina, Kentucky, Oklahoma and Tennessee) has been assembled by the consultants through prior research, and has been modified and expanded to address other space types. These guidelines will be further modified as needed to fit the culture and operations of UC Clermont.

The office space needs are based on the following planning module sizes:

<table>
<thead>
<tr>
<th>Position</th>
<th>Office ASF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean</td>
<td>240</td>
</tr>
<tr>
<td>Assoc./Asst Administrator</td>
<td>200</td>
</tr>
<tr>
<td>Director/Division Chair</td>
<td>140</td>
</tr>
<tr>
<td>Assistant Director</td>
<td>95</td>
</tr>
<tr>
<td>Faculty > .5 FTE and Instructors</td>
<td>125</td>
</tr>
<tr>
<td>Faculty < .5 FTE</td>
<td>65</td>
</tr>
<tr>
<td>Professional Staff</td>
<td>80</td>
</tr>
<tr>
<td>Clerical/Technical Staff</td>
<td>80</td>
</tr>
<tr>
<td>Student Worker</td>
<td>25</td>
</tr>
</tbody>
</table>

The space needs calculations for all departments includes office lounge space. Although these calculated needs may not generate sufficient space for a functional room, the generated need is recognized as a space allocation, and it is assumed that in practice shared lounges would be provided to serve two or more departments to in order to create a functional room.

Typically a factor of 10% of the calculated office need has been applied for the determination of office service space for Academic Affairs and 15% for most administrative departments unless otherwise noted. Supplemental office support space requirements have been recognized above the normal office service allocation for departments requiring waiting rooms, processing areas and longer-term storage needs. Typically these departments include operations dealing with the public and students such as senior administrative and student service offices.

For space planning purposes full time equivalent student counts are calculated using a conversion factor of 15 credit hours per undergraduate student and 12 credit hours per graduate student.

Classroom space needs is analyzed by applying a uniform set of utilization goals across all departments within the College.

The following utilization goals will be used in developing the classroom space needs:

- 40 Weekly Room Hours for scheduled use; 67% station occupancy in scheduled rooms and 20 assignable square feet per student station.
- For analysis purposes, the hours available for scheduling instruction and determining utilization are based on the following: 8:00 AM to 10:00 PM Monday-Thursday and 8:00 AM to 5:00 PM Friday, for a total of 65 available hours.
Instructional laboratory needs have been identified by individual academic program. Lab calculation criteria have been modified to reflect current instructional requirements per program area. Programs that do not generate sufficient student credit hours to calculate a functional lab facility are provided with a minimum lab need.

For initial planning purposes, an across-the-board undergraduate enrollment growth factor of 5% per year has been used. Future versions of the projected needs may apply more precise growth rates based on more detailed academic enrollment targets.

Faculty and staffing projections included in the study are based upon the projected enrollments and from input received from the departments, which were reviewed by the Dean and other senior administrators. Projected staffing for all academic departments generating student credit hours are assumed to increase proportionately to projected enrollments for the respective department. Staffing for certain non-academic departments that are student service oriented and are sensitive to overall enrollment growth have been projected using a campus-wide enrollment growth factor. Staffing needs for other departments have been reviewed on a case-by-case basis. These projections are assumed to be realistic expectations for future staffing levels.

Current space allocations for certain types of space needs are assumed to be sufficient and must be reviewed on a case-by-case basis. Typically these types of space will include: departmental libraries; student lounges assigned to administrative units; training rooms; testing rooms and interview rooms.

For analysis purposes certain types or categories of space are considered to be space resources that are shared or may

![Classroom being used in the Snyder Building.](Image)

![Computer lab in the Education Services Building.](Image)
classrooms, conference rooms, athletic/recreation, assembly, exhibition, food service, student lounges, meeting rooms and general support space. These categories are consolidated into a division identified as "Campus wide."

Fall term 2008 serves as the base year for enrollment projections.

The following table summarizes the impact of the enrollment assumptions by academic unit. It is assumed that the teaching ratios will remain constant for most units over this period; hence the number of faculty will increase in proportion to the percent FTE change in the table.

<table>
<thead>
<tr>
<th>Academic Unit</th>
<th>Current Credit Hours</th>
<th>Projected Credit Hours</th>
<th>Diff</th>
<th>Current FTE</th>
<th>Projected FTE</th>
<th>Diff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic Affairs</td>
<td>47.0</td>
<td>70.5</td>
<td>23.5</td>
<td>3.1</td>
<td>4.7</td>
<td>1.6</td>
</tr>
<tr>
<td>Allied Health</td>
<td>1,646.0</td>
<td>2,469.0</td>
<td>823.0</td>
<td>109.7</td>
<td>164.6</td>
<td>54.9</td>
</tr>
<tr>
<td>Arts</td>
<td>731.0</td>
<td>1,096.5</td>
<td>365.5</td>
<td>48.7</td>
<td>73.1</td>
<td>24.4</td>
</tr>
<tr>
<td>Biological Sciences</td>
<td>3,734.0</td>
<td>5,601.0</td>
<td>1,867.0</td>
<td>248.9</td>
<td>373.4</td>
<td>124.5</td>
</tr>
<tr>
<td>Business Division</td>
<td>6,892.0</td>
<td>10,338.0</td>
<td>3,446.0</td>
<td>459.5</td>
<td>689.2</td>
<td>229.7</td>
</tr>
<tr>
<td>Chemistry Labs</td>
<td>1,533.0</td>
<td>2,299.5</td>
<td>766.5</td>
<td>102.2</td>
<td>153.3</td>
<td>51.1</td>
</tr>
<tr>
<td>Engineering Tech Labs</td>
<td>713.0</td>
<td>1,069.5</td>
<td>356.5</td>
<td>47.5</td>
<td>71.3</td>
<td>23.8</td>
</tr>
<tr>
<td>Geology/Geography Labs</td>
<td>512.0</td>
<td>768.0</td>
<td>256.0</td>
<td>34.1</td>
<td>51.2</td>
<td>17.1</td>
</tr>
<tr>
<td>Humanities</td>
<td>16,666.0</td>
<td>24,999.0</td>
<td>8,333.0</td>
<td>1,111.1</td>
<td>1,666.6</td>
<td>555.5</td>
</tr>
<tr>
<td>Math & Physical Sciences</td>
<td>3,703.0</td>
<td>5,554.5</td>
<td>1,851.5</td>
<td>246.9</td>
<td>370.3</td>
<td>123.4</td>
</tr>
<tr>
<td>Physics Labs</td>
<td>703.0</td>
<td>1,054.5</td>
<td>351.5</td>
<td>46.9</td>
<td>70.3</td>
<td>23.4</td>
</tr>
<tr>
<td>UC Nursing</td>
<td>1,836.0</td>
<td>2,754.0</td>
<td>918.0</td>
<td>122.4</td>
<td>183.6</td>
<td>61.2</td>
</tr>
<tr>
<td>Totals</td>
<td>38,716.0</td>
<td>58,074.0</td>
<td>19,358.0</td>
<td>2,581.1</td>
<td>3,871.6</td>
<td>1,290.5</td>
</tr>
</tbody>
</table>
5.4 Existing Space on Campus

The Clermont College campus contains 213,297 gross square feet of space within seven buildings. Of this, approximately 135,150 square feet are actually assignable to a department or administrative unit. The remaining 78,000 square feet are taken up by non-assignable space such as corridors, restrooms, mechanical and custodial rooms etc.

The following table outlines the current net assignable square feet of space on campus—broken down by type of space within each building. The total net assignable square feet available is 135,150.

This table excludes non-assignable space such as corridors, restrooms, mechanical and custodial rooms.

<table>
<thead>
<tr>
<th>Space Type</th>
<th>Edith P. Jones</th>
<th>Education Services</th>
<th>Facility Mgmt.</th>
<th>Snyder Addition</th>
<th>SAC</th>
<th>Student SVCS.</th>
<th>West Woods</th>
<th>Totals NASF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assembly</td>
<td>7,012</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7,012</td>
</tr>
<tr>
<td>Ath/Rec.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>477</td>
<td>13,359</td>
<td>0</td>
<td>0</td>
<td>13,836</td>
</tr>
<tr>
<td>Classroom</td>
<td>5,321</td>
<td>5,242</td>
<td>0</td>
<td>2,524</td>
<td>0</td>
<td>4,454</td>
<td>4,259</td>
<td>21,800</td>
</tr>
<tr>
<td>Exhibit</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1,401</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1,401</td>
</tr>
<tr>
<td>Food</td>
<td>3,468</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3,468</td>
</tr>
<tr>
<td>Instr. Labs</td>
<td>9,288</td>
<td>6,262</td>
<td>0</td>
<td>15,921</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>31,471</td>
</tr>
<tr>
<td>Library</td>
<td>7,776</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7,776</td>
</tr>
<tr>
<td>Lounge</td>
<td>3,121</td>
<td>0</td>
<td>0</td>
<td>234</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3,355</td>
</tr>
<tr>
<td>Retail</td>
<td>183</td>
<td>0</td>
<td>0</td>
<td>2,220</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2,403</td>
</tr>
<tr>
<td>Office</td>
<td>6,593</td>
<td>4,716</td>
<td>0</td>
<td>10,591</td>
<td>0</td>
<td>5,277</td>
<td>4,023</td>
<td>31,200</td>
</tr>
<tr>
<td>Gen. Use</td>
<td>1,126</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1,126</td>
</tr>
<tr>
<td>Spec. Use</td>
<td>60</td>
<td>1,626</td>
<td>0</td>
<td>606</td>
<td>0</td>
<td>471</td>
<td>0</td>
<td>2,763</td>
</tr>
<tr>
<td>Supp</td>
<td>5,730</td>
<td>0</td>
<td>1,356</td>
<td>453</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7,539</td>
</tr>
<tr>
<td>Totals</td>
<td>49,678</td>
<td>17,846</td>
<td>1,356</td>
<td>34,427</td>
<td>13,359</td>
<td>10,202</td>
<td>8,282</td>
<td>135,150</td>
</tr>
</tbody>
</table>
5.5 Projected Space Needs for Current 2,800 FTE Level and Future 4,000 FTE Level

Based on accepted weekly use standards, classrooms are basically approaching capacity, however, there may be opportunities to improve utilization in the 8 am or 5 pm timeslots. Approximately ten new classrooms (totaling 18,000 gross square feet) are needed to accommodate an FTE of 4,000 students over the next 10 years.

Teaching labs are in strong demand. Approximately 22 new labs will be needed within 10 years to handle an FTE of 4,000 students. Other spaces that need significant space are faculty and staff offices, library expansion, food service/merchandising and student study areas.

The following graph outlines the current space, current needs based on current enrollment and projected needs as far as assigned space and 5% enrollment growth each year for ten years. Based on this graph, there is a projected need for approximately 110,000 assignable square feet (approximately 165,000 gross square feet) over the next ten years. There is an immediate need for approximately 40,000 assignable square feet (approximately 60,000 gross square feet).
This chart and table represents the current space, current needs based on current FTE levels and projected “space needs by type of space” for an FTE of 4,000 students. The graph contains assignable square feet while the table outlines both assignable and gross square footage figures.

<table>
<thead>
<tr>
<th>Space Type</th>
<th>Current</th>
<th>Current Need for Additional NASF</th>
<th>NASF Needed if 4,000 FTE</th>
<th>NSF</th>
<th>GSF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classrooms</td>
<td>21,800</td>
<td>1,000</td>
<td>12,000</td>
<td>15,000</td>
<td>18,750</td>
</tr>
<tr>
<td>Instructional Labs</td>
<td>31,471</td>
<td>6,000</td>
<td>24,000</td>
<td>30,000</td>
<td>37,500</td>
</tr>
<tr>
<td>Offices</td>
<td>31,200</td>
<td>-2,000</td>
<td>7,000</td>
<td>8,750</td>
<td>10,938</td>
</tr>
<tr>
<td>Library</td>
<td>7,776</td>
<td>5,000</td>
<td>11,000</td>
<td>13,750</td>
<td>17,188</td>
</tr>
<tr>
<td>Athletic/Rec</td>
<td>13,836</td>
<td>14,000</td>
<td>19,000</td>
<td>23,750</td>
<td>29,688</td>
</tr>
<tr>
<td>Exhibition</td>
<td>1,401</td>
<td>3,000</td>
<td>4,000</td>
<td>5,000</td>
<td>6,250</td>
</tr>
<tr>
<td>Food Facilities</td>
<td>3,468</td>
<td>5,000</td>
<td>10,000</td>
<td>12,500</td>
<td>15,625</td>
</tr>
<tr>
<td>Lounge</td>
<td>3,355</td>
<td>2,000</td>
<td>4,000</td>
<td>5,000</td>
<td>6,250</td>
</tr>
<tr>
<td>Merchandise/Retail</td>
<td>2,403</td>
<td>2,000</td>
<td>4,000</td>
<td>5,000</td>
<td>6,250</td>
</tr>
<tr>
<td>Meeting Rooms</td>
<td>0</td>
<td>2,000</td>
<td>4,000</td>
<td>5,000</td>
<td>6,250</td>
</tr>
<tr>
<td>Support</td>
<td>7,539</td>
<td>2,000</td>
<td>5,000</td>
<td>6,250</td>
<td>7,813</td>
</tr>
<tr>
<td>Health Center</td>
<td>0</td>
<td>1,000</td>
<td>2,000</td>
<td>2,500</td>
<td>3,125</td>
</tr>
<tr>
<td>Assembly</td>
<td>7,012</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>General Use</td>
<td>1,126</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Special Use</td>
<td>2,763</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Totals</td>
<td>135,150</td>
<td>41,000</td>
<td>106,000</td>
<td>165,625</td>
<td></td>
</tr>
</tbody>
</table>
5.6 Classroom Supply

This chart outlines the current classroom supply. The campus has 28 classrooms with an average capacity of 39 students.

Notes: This includes four service rooms totaling 246 ASF, and excludes two Park 50 classrooms. Jones Room 207 was a classroom in 2007, but is now a teaching lab. Jones Room 05 was converted to a classroom in 2009 due to the Headstart program being re-located. When Allied Health moves out, a block of space will become available in the Jones building that could accommodate approximately seven classrooms.

<table>
<thead>
<tr>
<th>Number</th>
<th>ASF</th>
<th>Capacity</th>
<th>Avg Station Size</th>
<th>Avg Room Size</th>
<th>Capacity per Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>21,800</td>
<td>1,112</td>
<td>19.6</td>
<td>778.6</td>
<td>39.7</td>
</tr>
</tbody>
</table>

5.7 Utilization Rates

Fall 2008 Classroom Utilization Rates are outlined below. If a section time goes through the five o’clock time, it may be counted in both the daytime and evening times. Please note that in the table below, WRH equals Weekly Room Hours, and that some sections spanning both the daytime and evening timeframes may be counted in both.

Daytime Period: 8 AM – 5 PM

Evening Period 5 PM – 9 PM

All Day Period: 8 AM – 9 PM

<table>
<thead>
<tr>
<th>Time Period</th>
<th>Avail. Hrs.</th>
<th>Total WRH</th>
<th>Avg. WRH</th>
<th>% WRH</th>
<th>Station Occup</th>
<th>WSCH</th>
<th>Total Enroll</th>
<th>Total Sect</th>
<th>Avg. Sect Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daytime</td>
<td>45</td>
<td>732.4</td>
<td>26.2</td>
<td>58.2%</td>
<td>69.4%</td>
<td>20,197</td>
<td>7,177</td>
<td>266</td>
<td>26.8</td>
</tr>
<tr>
<td>Evening</td>
<td>20</td>
<td>308.3</td>
<td>11.0</td>
<td>55.0%</td>
<td>62.6%</td>
<td>7,658</td>
<td>2,743</td>
<td>133</td>
<td>20.6</td>
</tr>
<tr>
<td>All Day</td>
<td>65</td>
<td>1,040.7</td>
<td>37.2</td>
<td>57.2%</td>
<td>67.4%</td>
<td>27,853</td>
<td>9,565</td>
<td>359</td>
<td>26.6</td>
</tr>
</tbody>
</table>
5.8 Classroom Usage by Day and Time of Day

This chart outlines the use of classrooms by time of day and the number of “contact hours” per week that classrooms are being used. Based on the chart, the peak time that classrooms are being used is Wednesdays at 10 am, while the least used time are Mondays at 8 am and Friday after 3 pm and into the evening hours.

This data is useful for identifying low utilization periods and uneven scheduling patterns within the class schedule. Increasing the use of classrooms during low utilization times would allow for more efficient use of the existing classroom space if demand for more classroom space exists or is forecast for the future. This existing available space could be used before new space is created, as a way to use campus resources most efficiently.
5.9 Enrollment Capacity

Enrollment capacity of current classrooms—as a function of weekly room hours utilization is outlined in the chart below. In reading this chart, for example, at 40 weekly room hours, the existing classrooms could support an FTE of 2,775 or an increase of 7.5% over 2008 enrollment levels.

Students discussing class assignments.
5.10 Classroom Space Needs

The number of new classrooms required as a function of enrollment is outlined below. The classrooms required is based on the following assumptions—class section size of 27 students and a classroom utilization rate increased to 40 weekly room hours.

Assumptions:

(1) Increase utilization to 40 WRH with 67% station occupancy
(2) Current classroom seats remain constant
(3) Station Size = 22 ASF
5.11 Instructional Labs

Instructional lab needs are outlined in the following table and graphs. The first table and graph outlines number of teaching labs needed by division as a function of enrollment levels and the second graph on the next page shows the square footages needed by division.

<table>
<thead>
<tr>
<th>Division</th>
<th>Current</th>
<th>2,581</th>
<th>2,800</th>
<th>3,000</th>
<th>3,200</th>
<th>3,400</th>
<th>3,600</th>
<th>3,800</th>
<th>4,000</th>
<th>New</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>Art</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Allied Health</td>
<td>5</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>Biology</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Chemistry</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Engineering</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>10</td>
<td>10</td>
<td>11</td>
<td>6</td>
</tr>
<tr>
<td>Geology</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Nursing</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Physics</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>30</td>
<td>33</td>
<td>34</td>
<td>37</td>
<td>39</td>
<td>40</td>
<td>42</td>
<td>45</td>
<td>22</td>
</tr>
</tbody>
</table>

Number of Teaching Labs as Function of Enrollment

- PHYS
- NURS
- GEOL
- ENGR
- CHEM
- BIOL
- ALH
- Art
- Bus
Students preparing for class.
5.12 Office Space Needs

Office space needs are outlined in the following graph. However, there are several office space issues that need to be answered:

1. Adjunct faculty are included in the calculation @ 65 assigned square feet per FTE. Is this criteria too generous and should we consider an alternative means of allocating office space for these positions? (i.e., bullpens). Note: Current adjunct faculty FTE is 56.3 which generates approximately 3,660 assigned square feet. Projected adjunct FTE is estimated at 84.5 that generates 5,500 ASF.

2. For this iteration of the model, we have rolled up conference room space as a “campus wide” grouping, assuming these rooms are a shared campus resource.
5.13 Library Space Needs

Library Space needs are outlined below—using the formulas and assumptions as follows to determine library space needs.

Stack space + reading/study space + lounge space + support space

Assuming a 6% annual growth rate for collections.

However, confirmation of the collection growth rate and if a consolidation of the Library and a potential Learning Center is to be implemented.

<table>
<thead>
<tr>
<th>Space Type</th>
<th>Current Space</th>
<th>Current Need</th>
<th>Projected Need</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stack</td>
<td>3,000</td>
<td>4,800</td>
<td></td>
</tr>
<tr>
<td>Reading/Study</td>
<td>7,089</td>
<td>10,634</td>
<td></td>
</tr>
<tr>
<td>Lounge</td>
<td>529</td>
<td>793</td>
<td></td>
</tr>
<tr>
<td>Support</td>
<td>1,593</td>
<td>2,434</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>7,776</td>
<td>12,221</td>
<td>18,661</td>
</tr>
</tbody>
</table>

Stacks on the second floor of the library.
5.14 Athletic, Physical Education and Recreation Space Needs

Athletic, Physical Education and Recreation Space Needs—based on the following formula—are outlined below.

Minimum core of 18,500 assigned square feet + 3.5 assigned square feet per FTE.

<table>
<thead>
<tr>
<th>Current Space</th>
<th>Current Need</th>
<th>Projected Need</th>
</tr>
</thead>
<tbody>
<tr>
<td>13,386</td>
<td>27,534</td>
<td>32,051</td>
</tr>
</tbody>
</table>

5.15 Food Service Space Needs

Food service space needs outlined below are based on the following formula:

16% of student FTE + 10% of faculty/staff FTE times 20 assigned square feet.

<table>
<thead>
<tr>
<th>Current Space</th>
<th>Current Need</th>
<th>Projected Need</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,468</td>
<td>8,636</td>
<td>12,924</td>
</tr>
</tbody>
</table>

5.16 Student Lounge Space Needs

Student Lounge Space as outlined below is based on the formula of student FTE times two assigned square feet per student FTE.

<table>
<thead>
<tr>
<th>Current Space</th>
<th>Current Need</th>
<th>Projected Need</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,335</td>
<td>5,162</td>
<td>7,743</td>
</tr>
</tbody>
</table>
5.17 Other Space Types and Issues

Space modeling also includes calculations for Meeting Room space and Health Center treatment space. These categories add another 5,460 ASF to the current need and 8,147 ASF to the projected need. No current space exists for these types.

Issue: Are these types of spaces considered to be a priority? Are they a requirement or more of a desired space?

A calculated need for merchandising space is also included that deals primarily with the bookstore operations. Current space is about 2,400 ASF. Calculation ranges from 5,100 ASF for current to 7,700 ASF for projected.

The library serves many functions including study and lounge type spaces for students.
5.18 Current Classroom Supply

The Fall 2007 space inventory database was used to identify the number of general purpose classrooms located on the Batavia campus. Data related to the classrooms are displayed in the table below.

Notes:

Includes 4 service rooms totaling 246 ASF.

Excludes two classrooms located at the Park 50 site.

Jones Bldg. Room 207 was classified as a classroom in 2007 but is currently a teaching lab.

<table>
<thead>
<tr>
<th>General Purpose Classrooms</th>
<th>Number</th>
<th>ASF</th>
<th>Capacity</th>
<th>Station Size</th>
<th>Average Room Size</th>
<th>Capacity per Room</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>28</td>
<td>21,800</td>
<td>1,112</td>
<td>19.6</td>
<td>778.6</td>
<td>39.7</td>
</tr>
</tbody>
</table>

5.19 Fall 2008 Classroom Utilization

The Fall 2008 class file database was used to develop a baseline utilization profile for all courses taught at the Batavia campus. These statistics have been used in formulating the modeling criteria applied to the classroom calculations. The following table outlines utilization rates.

<table>
<thead>
<tr>
<th>Utilization</th>
<th>Hours</th>
<th>Total WRH</th>
<th>Avg. WRH</th>
<th>% WRH</th>
<th>Station Occupancy</th>
<th>WSCH</th>
<th>Total Enrollment</th>
<th>Total Sections</th>
<th>Avg. Section Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daytime (8am to 5pm)</td>
<td>45</td>
<td>732.4</td>
<td>26.2</td>
<td>58.2%</td>
<td>69.4%</td>
<td>20,197</td>
<td>7,127</td>
<td>266</td>
<td>26.8</td>
</tr>
<tr>
<td>Evening (5pm to 9pm)</td>
<td>20</td>
<td>308.3</td>
<td>11.0</td>
<td>55.0%</td>
<td>62.6%</td>
<td>7,658</td>
<td>2,743</td>
<td>133</td>
<td>20.6</td>
</tr>
<tr>
<td>All Day 8am to 9pm</td>
<td>65</td>
<td>1,040.7</td>
<td>37.2</td>
<td>57.2%</td>
<td>67.4%</td>
<td>27,853</td>
<td>9,565</td>
<td>359</td>
<td>26.6</td>
</tr>
</tbody>
</table>
Note: The Daytime and Evening Utilizations are subsets of the All Day Utilization. Some sections span the dividing time (5pm) and may be counted in both sub sets and may not total to the All Day Utilization.

5.20 Time by Day Distribution – Contact Hours

Another process used in analyzing the current utilization patterns for classrooms is to display the data in a format that illustrates an intensity of use for each day of the week. This profile is called a Time by Day Distribution and is displayed in the table and graphs below. This data may be useful for identifying low utilization periods and uneven scheduling patterns.

New Classroom Space Needed as Campus FTE Enrollments Increase

The following chart indicates the amount of new classroom space that the campus would need as enrollment increases toward 4,000 FTE. Assumptions:

<table>
<thead>
<tr>
<th>Time</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
<th>Total</th>
<th>Hour</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>800</td>
<td>6.0</td>
<td>9.0</td>
<td>6.0</td>
<td>9.0</td>
<td>6.0</td>
<td>36.0</td>
<td>3.5%</td>
<td></td>
</tr>
<tr>
<td>900</td>
<td>24.0</td>
<td>18.3</td>
<td>24.5</td>
<td>15.3</td>
<td>23.5</td>
<td>105.5</td>
<td>10.1%</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>26.0</td>
<td>24.3</td>
<td>27.0</td>
<td>22.3</td>
<td>25.0</td>
<td>124.7</td>
<td>12.0%</td>
<td></td>
</tr>
<tr>
<td>1100</td>
<td>23.0</td>
<td>26.0</td>
<td>25.0</td>
<td>26.0</td>
<td>23.0</td>
<td>123.0</td>
<td>11.8%</td>
<td></td>
</tr>
<tr>
<td>1200</td>
<td>23.0</td>
<td>13.7</td>
<td>23.0</td>
<td>13.7</td>
<td>22.0</td>
<td>95.3</td>
<td>9.2%</td>
<td></td>
</tr>
<tr>
<td>1300</td>
<td>19.4</td>
<td>8.9</td>
<td>20.9</td>
<td>6.9</td>
<td>19.0</td>
<td>75.2</td>
<td>7.2%</td>
<td></td>
</tr>
<tr>
<td>1400</td>
<td>15.5</td>
<td>22.0</td>
<td>18.5</td>
<td>20.0</td>
<td>13.0</td>
<td>89.0</td>
<td>8.5%</td>
<td></td>
</tr>
<tr>
<td>1500</td>
<td>5.8</td>
<td>17.2</td>
<td>8.2</td>
<td>14.9</td>
<td>1.4</td>
<td>47.4</td>
<td>4.6%</td>
<td></td>
</tr>
<tr>
<td>1600</td>
<td>4.4</td>
<td>15.1</td>
<td>5.1</td>
<td>12.1</td>
<td>0.0</td>
<td>36.7</td>
<td>3.5%</td>
<td></td>
</tr>
<tr>
<td>1700</td>
<td>8.0</td>
<td>10.0</td>
<td>9.6</td>
<td>7.7</td>
<td>0.0</td>
<td>35.3</td>
<td>3.4%</td>
<td></td>
</tr>
<tr>
<td>1800</td>
<td>15.9</td>
<td>14.1</td>
<td>17.2</td>
<td>15.1</td>
<td>1.0</td>
<td>63.3</td>
<td>6.1%</td>
<td></td>
</tr>
<tr>
<td>1900</td>
<td>24.9</td>
<td>20.0</td>
<td>23.9</td>
<td>22.0</td>
<td>1.0</td>
<td>91.8</td>
<td>8.8%</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>23.3</td>
<td>19.4</td>
<td>22.0</td>
<td>21.4</td>
<td>1.0</td>
<td>87.2</td>
<td>8.4%</td>
<td></td>
</tr>
<tr>
<td>2100</td>
<td>8.2</td>
<td>6.5</td>
<td>7.8</td>
<td>7.3</td>
<td>1.0</td>
<td>30.8</td>
<td>3.0%</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>227.4</td>
<td>224.4</td>
<td>238.7</td>
<td>213.7</td>
<td>136.9</td>
<td>1,041.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day Percent</td>
<td>21.8%</td>
<td>21.6%</td>
<td>22.9%</td>
<td>20.5%</td>
<td>13.2%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conducting experiments in a lab.
5.21 Enrollment Capacity of Current Classroom Supply

The following chart displays the Campus Student FTE that the current classroom supply could support at various weekly room hour utilization rates. Fall 2008 utilized an average of 37.2 hours per week up about 2.6 hours from Fall 2007. For example at a utilization of 40 hours per week the classroom supply could support about 2,775 FTE an increase of about 7.5% over the Fall 2008 FTE of 2,581.
5.22 New Classroom Space Needed as Campus FTE Enrollments Increase

The following chart indicates the amount of new classroom space that the campus would need as enrollment increases toward 4,000 FTE.

Assumptions:

1. Classroom utilization increases to 40 weekly room hours with a station occupancy of 67%.
2. Current classroom supply and number of seats remains constant at 1,112.
3. Station size in new classrooms averages 22 square feet.

![Number of Classrooms as Function of Enrollment]

Section Size = 27
5.23 Detailed Lab Needs

The data and charts displayed in the following pages detail the current instructional laboratories assigned by academic program or discipline at UC Clermont College. Included with the listing of the current labs are also service rooms. Additional information related to each lab is the reported seating capacity, average square feet size of the teaching station, room use by weekly room hours and in some cases the weekly student contact hours generated within the lab. An average station size for all labs and the average weekly room hours have been generated and shown as well.

For comparative purposes, the space planning factors used in generating the calculated space needs are indicated called CFP Lab Factors. Part of the review of these preliminary findings is to determine if the current conditions or CFP Factors (or another set of factors) yields the more accurate result.

The accompanying line graph displays the current lab space assigned to the program with a comparative line depicting the calculated need based on iterative increases to enrollments culminating at the 4,000 student enrollment level.

If indicated, there are notes or issues or questions related to the information displayed that seek further clarification or direction that may be used in refinement of the model.

Note: there is one scheduled teaching lab (Jones 116) and three open labs (Jones 209 and Snyder S174A and S174B) assigned to Academic Affairs. These labs are used by a number of disciplines such as Humanities, Education, Foreign Languages and CIS. Lab needs have been calculated for these disciplines based on the credit hour demand in each, even though the space is centrally assigned. Individual detailed reports are not included for these areas in this document but are included in the overall lab calculations.
5.24 Lab Supply and Projected Need

The following table and bar graph shows the number of labs needed as enrollment grows.

<table>
<thead>
<tr>
<th></th>
<th>Current</th>
<th>2,581</th>
<th>2,800</th>
<th>3,000</th>
<th>3,200</th>
<th>3,400</th>
<th>3,600</th>
<th>3,800</th>
<th>4,000</th>
<th>New Labs Needed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Art</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Allied Health</td>
<td>5</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>Biology</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Chemistry</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Engineering</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>10</td>
<td>10</td>
<td>11</td>
<td>6</td>
</tr>
<tr>
<td>Geology</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Nursing</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Physics</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>23</td>
<td>30</td>
<td>33</td>
<td>34</td>
<td>37</td>
<td>39</td>
<td>40</td>
<td>42</td>
<td>45</td>
<td>22</td>
</tr>
</tbody>
</table>

![Number of Teaching Labs as Function of Enrollment](chart.png)
5.25 Business Labs

Please note that the seating capacity for Room S154 is correct. This room has areas within it (in addition to the 24 seats for classroom functions) that are set aside for other functions—such as mock interviews—that are part of the courses that utilize this room. This does raise the average station size for the department significantly from 42.6 to 54.1. However, the 42.6 average should be used for space planning purposes.

The following graph outlines Business Lab needs as a function of enrollment.

<table>
<thead>
<tr>
<th>Building</th>
<th>Room Number</th>
<th>ASF</th>
<th>Capacity</th>
<th>Station Size</th>
<th>Fall 2008 WRH</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCEDUCTN</td>
<td>210</td>
<td>1,041</td>
<td>24</td>
<td>43.4</td>
<td>32.7</td>
</tr>
<tr>
<td>CCEDUCTN</td>
<td>150</td>
<td>1,021</td>
<td>24</td>
<td>42.5</td>
<td>32.0</td>
</tr>
<tr>
<td>CCEDUCTN</td>
<td>110</td>
<td>1,029</td>
<td>24</td>
<td>42.9</td>
<td>18.5</td>
</tr>
<tr>
<td>CCSNYDER</td>
<td>S154</td>
<td>1,952</td>
<td>24</td>
<td>81.3</td>
<td>16.6</td>
</tr>
<tr>
<td>CCEJONES</td>
<td>117</td>
<td>999</td>
<td>24</td>
<td>41.6</td>
<td>27.7</td>
</tr>
<tr>
<td>Sub Totals</td>
<td></td>
<td>6,042</td>
<td>120</td>
<td>54.1</td>
<td>25.5</td>
</tr>
<tr>
<td>Lab Service</td>
<td></td>
<td>7 Rooms</td>
<td>450</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Business Labs</td>
<td></td>
<td>6,492</td>
<td>120</td>
<td>54.1</td>
<td>25.5</td>
</tr>
<tr>
<td>CFP Lab Factors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>40</td>
</tr>
</tbody>
</table>

![Business Lab Square Feet Need as Function of Enrollment](image)

University of Cincinnati Clermont College Master Plan 5-27
5.26 Art Labs

Please note that the art lab is used for both studio instruction as well as art history classes, which creates some inherent inefficiency in use of the space. The current scheduled Weekly Room Hours is significantly greater than the CFP Factors, which indicates potential problems related to typical set up time required as well as student project work. We suggest the lower utilization rate.

The following graph outlines the amount of Art Lab space needed.

<table>
<thead>
<tr>
<th>Building</th>
<th>Room Num</th>
<th>ASF</th>
<th>Capacity</th>
<th>Station Size</th>
<th>Fall 2008 WRH</th>
<th>Fall 2008 WSCH</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCSNYDER</td>
<td>S153</td>
<td>1827</td>
<td>24</td>
<td>76.1</td>
<td>32.0</td>
<td>728</td>
</tr>
<tr>
<td>Lab Service</td>
<td>3 Rooms</td>
<td>383</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Art Labs</td>
<td></td>
<td>2210</td>
<td>24</td>
<td>92.1</td>
<td>32.0</td>
<td></td>
</tr>
<tr>
<td>CFP Factors - FAA</td>
<td></td>
<td></td>
<td></td>
<td>60</td>
<td>18</td>
<td>444</td>
</tr>
<tr>
<td>CFP Factors - ARTH</td>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>22</td>
<td>284</td>
</tr>
</tbody>
</table>

![Art Lab Square Feet Need as Function of Enrollment](chart.png)
5.27 Allied Health Labs

Jones Room 104 is classified as a teaching lab but does not have equipment and other characteristics expected in a lab as this room is used more like a classroom. The weekly room hour usage of the two labs in Jones is much greater than the CFP Factor so we need to understand better why the College is so much higher. Also, the current average station size is much lower than the CFP Factors especially for the Surgical Tech lab.

<table>
<thead>
<tr>
<th>Building</th>
<th>Room Num</th>
<th>ASF</th>
<th>Capacity</th>
<th>Station Size</th>
<th>Fall 2008 WRH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instruction Lab</td>
<td>CCEJONES</td>
<td>207</td>
<td>1024</td>
<td>46</td>
<td>22.3</td>
</tr>
<tr>
<td></td>
<td>CCEJONES</td>
<td>104</td>
<td>722</td>
<td>24</td>
<td>30.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1746</td>
<td>70</td>
<td>24.9</td>
<td></td>
</tr>
<tr>
<td>Open Labs</td>
<td>CCEJONES</td>
<td>106B</td>
<td>196</td>
<td>4</td>
<td>49.0</td>
</tr>
<tr>
<td></td>
<td>CCEJONES</td>
<td>104A</td>
<td>424</td>
<td>24</td>
<td>17.7</td>
</tr>
<tr>
<td></td>
<td>CCEJONES</td>
<td>106A</td>
<td>73</td>
<td>4</td>
<td>18.3</td>
</tr>
<tr>
<td></td>
<td>CCEJONES</td>
<td>106C</td>
<td>182</td>
<td>4</td>
<td>45.5</td>
</tr>
<tr>
<td></td>
<td>CCEJONES</td>
<td>106D</td>
<td>340</td>
<td>8</td>
<td>42.5</td>
</tr>
<tr>
<td></td>
<td>CCEJONES</td>
<td>203</td>
<td>549</td>
<td>24</td>
<td>22.9</td>
</tr>
<tr>
<td></td>
<td>CCEJONES</td>
<td>204</td>
<td>721</td>
<td>30</td>
<td>24.0</td>
</tr>
<tr>
<td></td>
<td>CCEJONES</td>
<td>106</td>
<td>412</td>
<td>16</td>
<td>25.8</td>
</tr>
<tr>
<td>Sub Totals</td>
<td></td>
<td>2897</td>
<td>114</td>
<td>25.4</td>
<td></td>
</tr>
<tr>
<td>Lab Service</td>
<td></td>
<td>6 rooms</td>
<td>373</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>5016</td>
<td>184</td>
<td>27.3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CFP Factors</th>
<th>Station Size</th>
<th>WRH</th>
<th>WSCH Fall 2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALH/PRED/RT</td>
<td>60</td>
<td>15</td>
<td>958</td>
</tr>
<tr>
<td>ST</td>
<td>125</td>
<td>15</td>
<td>250</td>
</tr>
</tbody>
</table>
5.28 Biological Sciences

Please note that the biology labs are used very intensely. CFP recommends that the weekly room use rate account for adequate set up time.

<table>
<thead>
<tr>
<th>Building</th>
<th>Room Num</th>
<th>ASF</th>
<th>Capacity</th>
<th>Station Size</th>
<th>Fall 2008 WRH</th>
<th>Fall 2008 WSCH</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCEDUCTN</td>
<td>260</td>
<td>1035</td>
<td>20</td>
<td>51.8</td>
<td>43.8</td>
<td></td>
</tr>
<tr>
<td>CCEDUCTN</td>
<td>245</td>
<td>1064</td>
<td>20</td>
<td>53.2</td>
<td>38.3</td>
<td></td>
</tr>
<tr>
<td>Sub Totals</td>
<td></td>
<td>2099</td>
<td>40</td>
<td>52.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lab Service</td>
<td></td>
<td>1030</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>3129</td>
<td>40</td>
<td>78.2</td>
<td>41.1</td>
<td>1412</td>
</tr>
<tr>
<td>CFP Factors</td>
<td></td>
<td></td>
<td></td>
<td>60.0</td>
<td>22</td>
<td></td>
</tr>
</tbody>
</table>

Biological Science Labs Need as a Function of Enrollment

- Calculated Need
- Current Space

University of Cincinnati Clermont College Master Plan 5-30
5.29 Chemistry Labs

There is some variation between the station sizes - current vs. planning. Additional clarification of this is needed as to why current is higher than the typical average.

<table>
<thead>
<tr>
<th>Building</th>
<th>Room Num</th>
<th>ASF</th>
<th>Capacity</th>
<th>Station Size</th>
<th>Fall 2008 WRH</th>
<th>Fall 2008 WSCH</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCSNYDER S278</td>
<td></td>
<td>1428</td>
<td>16</td>
<td>89.3</td>
<td>13.7</td>
<td></td>
</tr>
<tr>
<td>CCSNYDER S276</td>
<td></td>
<td>1428</td>
<td>18</td>
<td>79.3</td>
<td>31.1</td>
<td></td>
</tr>
<tr>
<td>Sub Totals</td>
<td></td>
<td></td>
<td></td>
<td>84.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lab Service</td>
<td></td>
<td></td>
<td></td>
<td>862</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>2856</td>
<td>34</td>
<td>109.4</td>
<td>22.4</td>
<td>689</td>
</tr>
<tr>
<td>CFP Factors</td>
<td></td>
<td></td>
<td></td>
<td>65.0</td>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>

Chemistry Lab Space Need as Function of Enrollment

![Graph showing the relationship between campus FTE and square feet required](image-url)
5.30 Engineering Labs

As outlined above, separate calculations were developed for the manufacturing lab and the CAD/computer lab types. The station size for the manufacturing lab is three times the current size.

<table>
<thead>
<tr>
<th>Building</th>
<th>Room Num</th>
<th>ASF</th>
<th>Capacity</th>
<th>Station Size</th>
<th>Fall 2008 WRH</th>
<th>Fall 2008 WSCN</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCSNYDER</td>
<td>S172</td>
<td>755</td>
<td>21</td>
<td>36.0</td>
<td>11.3</td>
<td></td>
</tr>
<tr>
<td>CCSNYDER</td>
<td>S160</td>
<td>525</td>
<td>18</td>
<td>29.2</td>
<td>26.6</td>
<td></td>
</tr>
<tr>
<td>CCSNYDER</td>
<td>S156</td>
<td>643</td>
<td>20</td>
<td>32.2</td>
<td>28.0</td>
<td></td>
</tr>
<tr>
<td>CCSNYDER</td>
<td>S155</td>
<td>602</td>
<td>18</td>
<td>33.4</td>
<td>17.0</td>
<td></td>
</tr>
<tr>
<td>CCSNYDER</td>
<td>S172A</td>
<td>689</td>
<td>21</td>
<td>32.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Service Rooms</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3,214</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3,939</td>
<td>98</td>
</tr>
<tr>
<td>CFP Factors - MFTN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100.0</td>
<td>15</td>
</tr>
<tr>
<td>CFP Factors - ENGTN/CSST/ELTN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td>22</td>
</tr>
</tbody>
</table>

Engineering Tech Lab Square Feet Need as Function of Enrollment

![Graph showing the need for engineering tech lab square feet as a function of enrollment](image)

University of Cincinnati

Clermont College Master Plan

5-32
5.31 Geology and Geography

<table>
<thead>
<tr>
<th>Building</th>
<th>Room Number</th>
<th>ASF</th>
<th>Capacity</th>
<th>Station Size</th>
<th>Fall 2008 WRH</th>
<th>Fall 2008 WSCH</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCSNYDER</td>
<td>S150</td>
<td>982</td>
<td>24</td>
<td>41</td>
<td>24</td>
<td>517</td>
</tr>
<tr>
<td>CFP Factors</td>
<td></td>
<td></td>
<td></td>
<td>47</td>
<td>22</td>
<td></td>
</tr>
</tbody>
</table>

Geology / Geography Lab Space as a Function of Enrollment

- Calculated Need
- Current Space

Square Feet vs. Campus FTE
5.32 Nursing Labs

Please note that all nursing courses are reported in nearby classrooms so there is no weekly room hour usage for the labs.

<table>
<thead>
<tr>
<th>Building</th>
<th>Room Num</th>
<th>ASF</th>
<th>Capacity</th>
<th>Station Size</th>
<th>Fall 2008 WRH</th>
<th>Fall 2008 WSCH</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCEJONES</td>
<td>103</td>
<td>1323</td>
<td>29</td>
<td>45.6</td>
<td></td>
<td>285</td>
</tr>
<tr>
<td>CFP Factors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>55.0</td>
<td>15.0</td>
</tr>
</tbody>
</table>

![Nursing Lab Space as Function of Enrollment](image-url)
5.33 Physics Labs

<table>
<thead>
<tr>
<th>Building</th>
<th>Room Num</th>
<th>ASF</th>
<th>Capacity</th>
<th>Station Size</th>
<th>Fall 2008 WRH</th>
<th>Fall 2008 WSCH</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCSNYDER</td>
<td>S171</td>
<td>822</td>
<td>18</td>
<td>45.7</td>
<td>16.5</td>
<td></td>
</tr>
<tr>
<td>Lab Service</td>
<td>1 room</td>
<td>288</td>
<td>18</td>
<td>61.7</td>
<td>16.5</td>
<td>273</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td></td>
<td>1,110</td>
<td>61.7</td>
<td>16.5</td>
<td>273</td>
</tr>
<tr>
<td>CFP Factors</td>
<td></td>
<td></td>
<td></td>
<td>62.0</td>
<td></td>
<td>22.0</td>
</tr>
</tbody>
</table>

Diagram:

Physics Lab Space as Function of Enrollment

- **Square Feet** vs. **Campus FTE**
- **Calculated Need**
- **Current Space**

Graph:

- Square Feet ranges from 800 to 1,600
- Campus FTE ranges from 2,581 to 4,000

University of Cincinnati
Clermont College Master Plan
5-35
5.34 Parking Needs Analysis

Accommodation of future parking needs is a crucial element in the planning of the campus. The chart below outlines the current supply and the projected parking need based on the assumptions suggested in the left hand column of the chart. The current supply of parking is 1,424 parking spaces, while the projected need (to accommodate 4,000 FTE enrollment) is approximately 2,120 spaces leaving a deficit of 696 spaces that are needed. Planning and programming of the campus and its site plan should reflect provision of locations for this additional parking need.

Currently, surface parking is the method for provision of parking on campus. However, the use of a parking deck may be necessary to provide the approximately 700 more parking spaces that are needed as flat and appropriately located vacant land available for parking is minimal. In addition, a deck will minimize the negative environmental impact as decks are a more efficient use of land and then wooded, steeply sloped areas on campus are preserved in their natural state.

If the campus were to grow to the projected full capacity of an enrollment of approximately 6,000 FTE, then approximately 3,180 total parking spaces would be needed based on the 0.45 spaces per FTE assumption and also including 0.08 spaces per FTE for staff/faculty. The graph on page 5-37 outlines the parking needs as FTE grows.

NOTE: The assumption has been made that housing will not be a part of the campus as far as the parking needs analysis.

<table>
<thead>
<tr>
<th>Parking Demand Assumptions (per Student FTE)</th>
<th>Current Supply of Parking Spaces (for fall 2009 FTE of 2,701)</th>
<th>Estimated Parking Needs for 4,000 FTE</th>
<th>Deficiency in Projected Parking Supply if 4,000 FTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student 0.45 / FTE</td>
<td>1,233</td>
<td>1,800</td>
<td>567</td>
</tr>
<tr>
<td>Staff 0.08 / FTE</td>
<td>191</td>
<td>320</td>
<td>129</td>
</tr>
<tr>
<td>Spaces currently available 1,424</td>
<td>Total estimated spaces needed 2,120</td>
<td></td>
<td>Approximately 696 more spaces are needed</td>
</tr>
</tbody>
</table>
This parking deck, which is on the Cincinnati State campus, shows how a brick façade could be designed to enhance the appearance on one side of the deck providing a more aesthetically pleasing view of the parking deck.

The graph above shows how the number of parking spaces needed changes as enrollment grows. This is based on a total of 0.53 spaces per FTE (0.53 spaces reflects combining student and staff parking needs).

With the existing parking supply at approximately 1,424, this graph shows that a parking deck will be needed when the additional parking needed reaches approximately three or four hundred more spaces or an FTE of approximately 4,000 students.
Chapter 6: Design Guidelines
6- Design Principles and Guidelines

6.1 Introduction

Implementation of the Clermont College Campus Master Plan will require the coordination of many separate planning, design, construction, and maintenance elements. Coordinated decisions about the landscape, building massing, architectural designs, sustainability initiatives, vehicular circulation and pedestrian routes should be made to ensure continuity as the campus evolves and new investments are made. The following design principles and guidelines will help link individual projects- that may have their own stand alone goals- to the overall goals of the campus master plan.

The first section of this chapter focuses on overall campus planning and design principles while the second portion outlines more specific design guidelines for Landscape, Site Furniture, Architecture/Urban Design and Interior Design.

6.2 General Campus Planning and Design Guidelines

The following design guidelines should direct site planning, project planning, programming and design activities towards achieving the master plan goals.

Create a coordinated architectural and urban design vocabulary for the campus. Improve the spatial organization of the campus, including its facilities, open spaces, circulation, parking and building massing to create a stronger sense of place.

Achieve an appropriate balance between aesthetics, operational and maintenance costs, material durability, and energy conservation measures.

Follow the campus land use districting guidelines outlined on the recommended campus land use plan which promotes new buildings in the Academic and Administrative district and prohibits development in Woodland Preserve areas. Following this districting map will help achieve a balance of growth of new facilities within the natural setting.

Increase safety of pedestrians by minimizing the conflicts between vehicles and pedestrians.

Balance safety and congestion at peak times by analyzing possible locations for stop signs and or additional turn lanes throughout campus to help traffic flow.

Increase visibility of campus from State Route 32.

Create a focal point/front door and or side doors for the campus core.

Utilize environmentally sensitive and sustainable site design, building design and landscape design principles.

Create building and interior layouts that encourage collaboration.

Utilize land efficiently throughout campus through the possible use of underground or deck parking and or mixed uses within buildings as well as building up rather than out.
Coordinate building size, massing, placement and resultant interior and exterior inter-connections between buildings.

The master plan should balance the existing advantages of Clermont College (such as small classes and a rural atmosphere) with any growth.

Account for future adjacent land uses that may be developed surrounding the campus and how they may impact the college and the public infrastructure.

Create a framework that accommodates projected needs and solutions for efficient use of and provision of space on campus.

6.3 Landscape, Parking, Site Furniture and Lighting Design Guidelines

Pedestrian Paths and Pavement

Pedestrian routes such as walkways, paths and pedestrian areas such as plazas and gathering areas, as well as major pedestrian intersections should be constructed of materials that reflect their context and usage. Construction of walks in high traffic areas should be of cement with a broom finish perpendicular to the direction of travel. Paths with less traffic or through wooded areas could be crushed limestone, gravel or a woodchip mulch material.

Walkways should be aligned to connect major destinations and offer a safe, interesting and direct route. Walkways should have a consistent and adequate width ranging from 12 feet for major pedestrian corridors to eight feet for medium traffic areas and six feet for minor walks. Pavement changes and or
signage should be used to designate crosswalks at roads and parking areas.

Visual sequences and stopping/rest points should be incorporated along walkways. These can be more formal areas with monuments or other elements or they can be informal areas of small plantings with tree canopy overhead.

Walkways should not be designed with a slope on the cross section, as these can be difficult to traverse in a wheelchair.

Crosswalks should have some type alert for approaching vehicular traffic. This could be accomplished with a change in paving material, roadway narrowing, vertical elements or white painted stripes.

Plazas or other special areas should be constructed of concrete pavers and or cement. Paver size and color should be coordinated with new or existing construction. Construction designs should incorporate sustainability initiatives.

Plazas should be designed with places to linger and gather along the edges with benches, seat walls and other vertical elements helping create an “outdoor room.” The microclimate of the plaza should also be considered with accommodations to shield the prevailing winds and the creation of areas that are sunny and shady. Lighting should be incorporated to allow for use during the evening, as well as the daytime.

Accessibility

All areas of campus, and all buildings within the campus, should be physically accessible to all people, whenever possible. Accessibility should be considered early in the design process and include solutions that are integrated into the overall design. Wherever
possible, make main entrances to buildings accessible. Do not relegate people with physical disabilities to the “back door.” The location of parking spaces for those with disabilities should be close to buildings. Curb ramps and sidewalks near these spaces should be available to allow for easy transition from the parking lot to the buildings.

Campus parking lots currently meet requirements for provision of spaces for those with disabilities. However, should new parking lots be constructed, additional spaces will be need to be designated that are in close proximity to existing or new buildings.

Steps, Railings and Ramps

Design all steps on campus to meet code and accessibility dimensions for outdoor stairs and to have suitable railings and guards. Match the width of steps and landings to the walkway connected to them. Treads and landings should be sloped to ensure drainage off of the steps. Provide walking surfaces with sufficient roughness to provide easy traction, even when wet. Provide lighting for all steps for safe night-time use.

Ramps should meet the American with Disabilities Act (ADA) requirements. Service ramps should be incorporated into design of buildings that may receive bulk supplies. These ramps should have a surface that provides traction.

Railings should be used where necessary for safety and accessibility. Railing design, material and color selections should be compatible with campus architecture and other site furniture. Railings should meet all applicable codes and ADA requirements in terms of height, extensions and picket spacing.
Vehicular Circulation and Parking

Streets and parking areas should be designed to balance the needs of vehicles with pedestrians to create a safe environment for both users. If possible, curbs and gutters, sidewalks and street trees along the road should be incorporated into the design of streets. On-street parking could also be considered in some lower traffic volume areas.

Main roads around and through the campus should have travel lanes for primary roads 12 feet wide. Additional width could be added to accommodate a bike lanes. When concrete curbs are cost prohibitive, construct pavement with a gravel edge or a white painted line. Accommodations for sustainable design should be considered in road design, construction and materials used.

Intersections should be perpendicular whenever possible.

Parking areas should be physically separated from road areas with vegetative screening or other types of buffer techniques. Pave, stripe and light parking areas for safe and convenient use.

Landscape islands should be incorporated at the end of and between parking rows to help direct traffic, improve pedestrian safety, enhance aesthetics and reduce the heat island effect of the parking lot.

Sustainable initiatives regarding paving materials, storm water retention/detention techniques and piping should...
be incorporated into designs for roads and parking areas, if possible.

Landscaping, Plants and Trees

Plant materials play a variety of aesthetic and functional roles within the landscape. Plants can focus attention on attractive features, identify building entrances, provide screening, environmental benefits, guide circulation and define outdoor spaces. Plants and trees should be selected and located based on their location within the landscape and the overall design, their relationship to other design elements and growth requirements. The following guidelines should be followed:

- Use species native to the area.
- Group plantings in clusters of odd numbers
- Avoid using plants with leaf or thorn litter near pedestrian walkways.
- Consider existing utility wires or building overhangs when choosing plants near these areas.
- Planting designs should be a collaborative effort between the landscape architect, building architect, campus grounds staff and campus planning office.
- Consider the following criteria in landscape designs- compatibility of soil/site conditions with specific requirements of the plant, desired size of the plant compared to its maximum size, purpose of the planting and the maintenance requirements.
- Create well defined edges for all planting beds. Cover bare areas with two to four inches of shredded hardwood mulch. Mulch a minimum two foot radius around all trees that are located within lawn areas to reduce potential damage from mowing.
- Provide year round interest in plantings by using evergreens, shade trees and ornamental trees that have interesting color, texture and form.
- Establish an ongoing tree planting program and woodlot/timber management program to ensure a variety of sizes and trees and the appropriate management of this resource.
- Plant trees in formal to informal patterns based on their location within campus – i.e. in a more formal/ceremonial area vs perimeter wooded areas.
- Design plantings to provide adequate room for mowing and snow removal equipment.
- Plant annual flowers and striking perennials only in special locations on the campus. Use flowers and accent perennials sparingly and mass such plantings to provide an adequate display.

Deciduous Shade Trees

Use deciduous trees primarily for climate modification, beautification, and greening of the campus. Placement at building entrances to provide overhead cover of seating areas are one opportunity for deciduous trees.

Street trees should be at least 6 feet back from the face of curbs and edges of pavement and in curbed planting islands (a minimum of 9 feet wide) in parking lots.
<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>Common Name</th>
<th>Cultivars</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cornus Kousa</td>
<td>Chinese Dogwood</td>
<td>Milky Way</td>
<td>Abundant flowers in June, interesting fruit, exfoliating bark, nice fall color.</td>
</tr>
<tr>
<td>Cornus florida</td>
<td>Native Dogwood</td>
<td>Cherokee Chief (pink flowers). Cherokee Princess (White Flowers)</td>
<td>Native, Fall Color, Semi-Shade preferred, intolerant of dry conditions.</td>
</tr>
<tr>
<td>Cornus mas</td>
<td>Cornelian Cherry</td>
<td>Golden Glory</td>
<td>Yellow flowers in Spring, durable, soil and pH adaptable, sun/semi-shade, hardy.</td>
</tr>
<tr>
<td>Crataegus viridis</td>
<td>Green Hawthorn</td>
<td>Winter King</td>
<td>Good fall color, persistent red fruit, white flowers, durable, soil adaptable.</td>
</tr>
<tr>
<td>Magnolia loebneri</td>
<td>Hybrid Magnolia</td>
<td>Dr. Merrill</td>
<td>Late spring white flowers, compact, upright habit, disease resistant.</td>
</tr>
<tr>
<td>Magnolia X</td>
<td>Hybrid Magnolia</td>
<td>Butterflies</td>
<td>Early yellow flowers, pyramidal form, soil adaptable.</td>
</tr>
<tr>
<td>Magnolia x soulangiana</td>
<td>Saucer Magnolia</td>
<td></td>
<td>Reddish/purple flowers, disease resistant, drought tolerant.</td>
</tr>
<tr>
<td>Magnolia virginiana</td>
<td>Sweetbay Magnolia</td>
<td></td>
<td>Fragrant flowers in May and June, Glossy foliage, withstands shade and wet conditions, disease resistant.</td>
</tr>
<tr>
<td>Malus</td>
<td>Ornamental Crabapple</td>
<td>Brandywine (pink flower), Centurion (red flowers), Harvest Gold (white flowers, yellow fruit), Indian Magic (rose/pink flowers), Prairie Fire (Pink/red, red foliage), Snowdrift (white flowers), Spring Snow (White flowers, fruitless, Sugar Tyme(White Flower)</td>
<td>Flowering, soil tolerant pollution tolerant, many different forms.</td>
</tr>
<tr>
<td>Prunus x cerasifera</td>
<td>Flowering Plum</td>
<td>Thundercloud, Newport</td>
<td>Purple foliage, pink flowers, upright habit</td>
</tr>
<tr>
<td>Prunus serrulata</td>
<td>Flowering Cherry</td>
<td>Kwanzan, Royal Burgundy (reddish foliage)</td>
<td>Pink flowers, wet soil intolerant.</td>
</tr>
<tr>
<td>Prunus subhirtella</td>
<td>Flowering Cherry</td>
<td>Autumnoles (autumn flowering), Pendula(Weeping Form)</td>
<td></td>
</tr>
<tr>
<td>Prunus virginiana</td>
<td>Canada Red Cherry</td>
<td>Red Select, Shubert</td>
<td>White flowers, maroon foliage.</td>
</tr>
<tr>
<td>Syringa reticulata</td>
<td>Lilac</td>
<td>Ivory Silk</td>
<td>White flowers in summer, hardy, compact habit, excellent street tree, nice bark.</td>
</tr>
<tr>
<td>Scientific Name</td>
<td>Common Name</td>
<td>Cultivars</td>
<td>Comments</td>
</tr>
<tr>
<td>---------------------------</td>
<td>----------------------</td>
<td>----------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Acer freemanii</td>
<td>Acer Maple</td>
<td>Celebration, Armstrong, Scarlet</td>
<td>Upright, compact form, tolerant of wet conditions, pollution tolerant, sun/partial shade.</td>
</tr>
<tr>
<td></td>
<td>Sentinel, Autumn Blaze</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acer rebrum</td>
<td>Red Maple</td>
<td>Northwood, October Glory, Red</td>
<td>Excellent fall color, tolerant of wet soils, uniform habit, sun/partial shade.</td>
</tr>
<tr>
<td></td>
<td>Sunset</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acer saccharum</td>
<td>Sugar Maple</td>
<td>Commemoration, Green Mountain,</td>
<td>Urban tolerant, good fall color, drought tolerant, rounded, oval habit, sun/partial shade.</td>
</tr>
<tr>
<td></td>
<td>Legacy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Betula nigra</td>
<td>River Birch</td>
<td>Heritage</td>
<td>Attractive bark (Heritage: white exfoliating), yellow fall color, tolerant of wet conditions.</td>
</tr>
<tr>
<td>Fagus grandifolia</td>
<td>American Beech</td>
<td></td>
<td>Beautiful bark, broadly oval habit, bronze fall color, intolerant of soil compaction, sun/semi-shade.</td>
</tr>
<tr>
<td>Fagus sylvatica</td>
<td>Rivers Purple Leaf Beech</td>
<td>‘riversii’</td>
<td>Beautiful bark, broadly oval habit, bronze fall color, intolerant of soil compaction, sun/semi-shade.</td>
</tr>
<tr>
<td>Gymnocladus dioica</td>
<td>Kentucky Coffee Tree</td>
<td></td>
<td>Oval habit, drought tolerant, coarse branching, double-compound foliage, sun/partial shade.</td>
</tr>
<tr>
<td>Liquidambar styraciflua</td>
<td>Sweet Gum</td>
<td></td>
<td>Pyramidal habit, excellent fall color, spiked fruit, tolerant of wet soils.</td>
</tr>
<tr>
<td>Liriodendron tulipifera</td>
<td>Tulip Poplar</td>
<td></td>
<td>Conical to oval shape, fast growth rate, spring flowers, tolerant of wet soils, sun/partial shade.</td>
</tr>
<tr>
<td>Metasequoia glyptostroboides</td>
<td>Dawn Redwood</td>
<td></td>
<td>Narrow, pyramidal habit, fast growth rate, wet soil tolerant, fern-like foliage, reddish brown bark, sun/partial shade.</td>
</tr>
<tr>
<td>Nyssa sylvatica</td>
<td>Black gum/Tupelo</td>
<td></td>
<td>Pyramidal Habit, Beautiful Fall Color, Wet Soil Tolerant, Salt Tolerant.</td>
</tr>
<tr>
<td>Platanus acerifolia</td>
<td>Sycamore/ London Plane tree</td>
<td>Bloodgood</td>
<td>Fast growth rate, broad habit, anthracafe resistant, heat and drought tolerant.</td>
</tr>
<tr>
<td>Quercus alba</td>
<td>White Oak</td>
<td></td>
<td>Broad spreading habit, long-lived native, drought tolerant, good fall color, well suited for urban conditions.</td>
</tr>
<tr>
<td>Quercus bicolor</td>
<td>Swamp White Oak</td>
<td></td>
<td>Open Habit, Peeling Bark, Tolerant of wet areas, tolerant of drought and salt.</td>
</tr>
<tr>
<td>Quercus coccinea</td>
<td>Scarlet Oak</td>
<td></td>
<td>Tall, open habit, beautiful fall color.</td>
</tr>
<tr>
<td>Quercus imbricaria</td>
<td>Shingle Oak</td>
<td></td>
<td>Broad rounded habit, good fall color, persistent foliage.</td>
</tr>
<tr>
<td>Taxodium distichum</td>
<td>Bald Cypress</td>
<td></td>
<td>Narrow, pyramidal habit, fern like foliage, wet soil tolerant, sun/partial shade.</td>
</tr>
</tbody>
</table>
Deciduous Large Trees (45' and Taller) continued

<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>Common Name</th>
<th>Cultivars</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tilia cordata</td>
<td>Little Leaf Linden</td>
<td>Greenspire</td>
<td>Oval habit, urban tolerant, rapid growth, susceptible to Japanese beetle.</td>
</tr>
<tr>
<td>Tilia tomentosa</td>
<td>Silver Linden</td>
<td>Satin Shadow, Sterling</td>
<td>Symmetrical habit, green foliage with silver underside, disease/insect resistant, urban tolerant.</td>
</tr>
<tr>
<td>Ulmus americana</td>
<td>American Elm</td>
<td>Delaware, Princeton</td>
<td>Vigorous growth rate, vase shaped habit, resistant to Dutch elm disease.</td>
</tr>
<tr>
<td>Ulmus japonica x wilsonia</td>
<td>Hybrid Elm</td>
<td>Accolade, Prospector</td>
<td>Arching limbs, graceful habit, fast growth, disease resistant.</td>
</tr>
<tr>
<td>Ulmus x 'Frontier', 'Homestead', 'Pioneer'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ulmus parvifolia</td>
<td>Lacebark Elm</td>
<td>Allee</td>
<td>Rounded habit, good fall color, finely textured foliage, peeling bark, disease resistance.</td>
</tr>
<tr>
<td>Zelkova Serrata</td>
<td>Japanese Zelkova</td>
<td>Green Vase, Village Green</td>
<td>Upright, vase shaped, nice fall color, disease resistant, adaptable.</td>
</tr>
<tr>
<td>Scientific Name</td>
<td>Common Name</td>
<td>Cultivars</td>
<td>Comments</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------</td>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td>Berberis timbergii ‘Atropurpurea’</td>
<td>Barberry: Red Barberry</td>
<td>Nana, Crimson Pygmy Barberry, Crimson Ruby, Bonanza Gold</td>
<td>Red/purple foliage, compact habit, sun only.</td>
</tr>
<tr>
<td>Caryopteris x clandonensis</td>
<td>Blue Spirea</td>
<td>Blue Mist, Dark Knight</td>
<td>Blue/Purple foliage, fragrant, silvery blue foliage, arching branches.</td>
</tr>
<tr>
<td>Cotoneaster apiculatus</td>
<td>Cranberry Cotoneaster</td>
<td></td>
<td>Low Growing, effective as groundcover, flowers and persistent red berries.</td>
</tr>
<tr>
<td>Cotoneaster dammeri</td>
<td>Royal Beauty Cotoneaster</td>
<td></td>
<td>Low Growing, effective as groundcover, flowers and persistent red berries.</td>
</tr>
<tr>
<td>Cotoneaster salicifolia</td>
<td>Willowleaf Cotoneaster</td>
<td></td>
<td>Low Growing, effective as groundcover, flowers and persistent red berries.</td>
</tr>
<tr>
<td>Forsythia viridissima</td>
<td>Forsythia</td>
<td>Bronxensis</td>
<td>Low growing, compact habit, yellow flowers.</td>
</tr>
<tr>
<td>Fothergilla gardenii</td>
<td>Dwarf Fothergilla</td>
<td></td>
<td>Fragnant white flowers, beautiful fall color, semi-shade tolerant, prefers moist, acid soils.</td>
</tr>
<tr>
<td>Hypericum calycinum</td>
<td>Aaronsbeard St. John’s Wort</td>
<td></td>
<td>Excellent semi-evergreen, yellow flowers.</td>
</tr>
<tr>
<td>Hypericum kalmianum</td>
<td>Kalms St. John’s Wort</td>
<td></td>
<td>Native, yellow flowers, tolerant of dry conditions.</td>
</tr>
<tr>
<td>Hypericum patulum</td>
<td>Hidecote St. John’s Wort</td>
<td>Hidecote</td>
<td>Semi-evergreen, sun-partial shade, soil adaptable.</td>
</tr>
<tr>
<td>Itea virginica</td>
<td>Virginia Sweetspire</td>
<td>Little Henry</td>
<td>Fragnant white flowers, good for massing, excellent fall color.</td>
</tr>
<tr>
<td>Potentilla fruticosa</td>
<td>Potentilla</td>
<td>Abbottswood (white flowers), Goldfinger (yellow flowers), Pink Beauty (pink flowers)</td>
<td></td>
</tr>
<tr>
<td>Rhus aromatica</td>
<td>Sumac: Fragrant Gro-low Sumac</td>
<td>Gro-Low</td>
<td>Rapidly spreading groundcover, excellent fall color.</td>
</tr>
<tr>
<td>Ribes alpinum</td>
<td>Alpine Currant</td>
<td>Green Mound</td>
<td>Dense growth, glossy leaves, semi-shade tolerant.</td>
</tr>
<tr>
<td>Rosa</td>
<td>Rose</td>
<td>Carefree Beauty (coral pink), Carefree Wonder (pink/white), Lovely Fairy (Rose Pink), 'nearly Wild (Pink, Knockout Roses, Meidiland Roses, Pavement Roses</td>
<td></td>
</tr>
<tr>
<td>Spiraea x bumalda</td>
<td>Hybrid Spirea</td>
<td>Anthony Water, Crispa, Goldflame, Lemon Princess</td>
<td>Distinct foliage and flower colors, soil adaptable, good fall color, excellent for massing.</td>
</tr>
<tr>
<td>Spiraea japonica</td>
<td>Spirea</td>
<td>Little Princess, Magic Carpet, Shirobana, Neon Flash</td>
<td></td>
</tr>
<tr>
<td>Weigela florida</td>
<td>Weigela</td>
<td>Midnight Wine, Minuet</td>
<td>Pink/purple flowers, purple foliage, low, mounding form.</td>
</tr>
<tr>
<td>Scientific Name</td>
<td>Common Name</td>
<td>Cultivars</td>
<td>Comments</td>
</tr>
<tr>
<td>------------------------------</td>
<td>----------------------------</td>
<td>------------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Aronia melanocarpa</td>
<td>Black Chokeberry</td>
<td>Autumn Magic</td>
<td>White flower, black fruit, beautiful fall color, sun & shade.</td>
</tr>
<tr>
<td>Hydrangea arborescens</td>
<td>Annabelle</td>
<td>Annabelle Hydrangea</td>
<td>White, snowball flowers June-September, shade tolerant.</td>
</tr>
<tr>
<td>Hydrangea macrophylla</td>
<td>Bigleaf Hydrangea,Lacecap Hydrangea, Mophead Hydrangea</td>
<td>All Summer Beauty, Endless Summer, Nikko Blue</td>
<td>Pink-blue flowers June - September.</td>
</tr>
<tr>
<td>Hydrangea quercifolia</td>
<td>Oakleaf Hydrangea</td>
<td>Snow Queen, Snow Flake</td>
<td>White flowers in June, fall color, shade tolerant.</td>
</tr>
<tr>
<td>Spirea nipponica</td>
<td>Snowmound Spirea</td>
<td>Snowmound</td>
<td>Masses of white flower late May-June.</td>
</tr>
<tr>
<td>Syringa meyeri</td>
<td>Dwarf Korean Lilac</td>
<td>Palitan</td>
<td>Fragrant violet-purple flowers late may, nice fall color.</td>
</tr>
<tr>
<td>Syringa patula</td>
<td>Miss Kim Lilac</td>
<td>Miss Kim</td>
<td>Early summer blooming, purple flower.</td>
</tr>
<tr>
<td>Viburnum carlesii</td>
<td>Korean Spice Viburnum</td>
<td>Cayuga, Compactum</td>
<td>Fragrant white flowers in late April, nice fall color.</td>
</tr>
<tr>
<td>Viburnum nudum</td>
<td>Smooth Witherod Viburnum</td>
<td>Winterthur</td>
<td>White flower in June, red fall color, excellent fruit sets white to pink to blue.</td>
</tr>
<tr>
<td>Viburnum opulus</td>
<td>Compact European Cranberrybush</td>
<td>Compactum</td>
<td>White flowers in June, fall color, shade tolerant.</td>
</tr>
<tr>
<td>Lespedeza bicolor</td>
<td>Bush Clover</td>
<td>Summer Beauty</td>
<td>Violet pink flowers mid-late summer</td>
</tr>
<tr>
<td>Clethra alnifolia</td>
<td>Summersweet</td>
<td></td>
<td>Fragrant flowers July - September, shade tolerant.</td>
</tr>
<tr>
<td>Itea virginica</td>
<td>Virginia Sweetspire</td>
<td>Henry’s Garnet</td>
<td>Fragrant white flowers late June, crimson fall color.</td>
</tr>
<tr>
<td>Kerria japonica</td>
<td>Japanese Kerria</td>
<td></td>
<td>Yellow flowers in spring, light green stems.</td>
</tr>
<tr>
<td>Viburnum plicatum</td>
<td>Newport</td>
<td>Newport</td>
<td>Snowball like flowers in May, compact habit, burgundy fall color.</td>
</tr>
<tr>
<td>Viburnum plicatum tomentosum</td>
<td>Doublefile Viburnum, Japanese Snowball Bush</td>
<td>Summer Snowflake</td>
<td>White flowers all summer, nice fall color.</td>
</tr>
<tr>
<td>Weigela florida</td>
<td>Weigela</td>
<td>Carnaval, French Lace, Sunny Princess, Winte and Roses</td>
<td>Pink, red flowers in summer, foliage quality includes varigated and burgandy color leaves.</td>
</tr>
<tr>
<td>Scientific Name</td>
<td>Common Name</td>
<td>Cultivars</td>
<td>Comments</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>------------------------------</td>
<td>-------------------</td>
<td>--</td>
</tr>
<tr>
<td>Aesculus parviflora</td>
<td>Bottlebrush Buckeye</td>
<td></td>
<td>White flowers in July, shade tolerant, 8’-12’ height.</td>
</tr>
<tr>
<td>Aronia arbutifolia</td>
<td>Brilliant Red Chokeberry</td>
<td>Brilliantissima</td>
<td>White flowers in Spring, red fruit in fall, red fall color, 6’-8’ height.</td>
</tr>
<tr>
<td>BeautyberryCallicarpa bodinieri</td>
<td>Profusion Beautyberry</td>
<td>Profusion</td>
<td>Lavender flowers in July-August, violet purple foliage in fall, 6’-8’ height.</td>
</tr>
<tr>
<td>Calycanthus floridus</td>
<td>Sweetshrub</td>
<td></td>
<td>Reddish-brown fragrant flowers in May, shade tolerant, 6’-9’ height.</td>
</tr>
<tr>
<td>Corylus avellana</td>
<td>Harry Lauder’s Walking Stick</td>
<td>Contorta</td>
<td>Twisted curly branches, 8’ height.</td>
</tr>
<tr>
<td>Cotinus coggygria</td>
<td>Royal Purple Smoketree</td>
<td>Royal Purple</td>
<td>Purple - red leaves, “airy” purplish flowers, 10’ to 15’ height.</td>
</tr>
<tr>
<td>Euonymus alatus</td>
<td>Compact Burning Bush</td>
<td>Compacta</td>
<td>Brilliant red fall color, 8’ to 10’ height.</td>
</tr>
<tr>
<td>Forsythia x. intermedia</td>
<td>Forsythia</td>
<td>Lynwood Gold, Northern Sun</td>
<td>Yellow flowers in spring, hardy, 8’ to 10’ height.</td>
</tr>
<tr>
<td>Fothergilla Major</td>
<td>Large Fothergilla</td>
<td></td>
<td>White, fragrant flowers in spring, beautiful fall color, 8’ to 10’ height.</td>
</tr>
<tr>
<td>Hamamelis vernalis</td>
<td>Verval Witchhazel</td>
<td></td>
<td>Yellow flowers late winter, 10’ to 12’ height.</td>
</tr>
<tr>
<td>Hamamelis virginiana</td>
<td>Common Witchhazel</td>
<td></td>
<td>Yellow flowers in fall, 15’ height.</td>
</tr>
<tr>
<td>Hibiscus syriacus hybrids</td>
<td>Rose of Sharon</td>
<td>diana, Aphrodite, Ardens, Blue Satin</td>
<td>Multiple color selection blue, white, pink or red, 8’ to 10’ height.</td>
</tr>
<tr>
<td>Hydrangea paniculata</td>
<td>Late Panicle Hydrangea</td>
<td>Tardiva</td>
<td>White flowers in August-September, shade tolerant, 6’ to 8’ height.</td>
</tr>
<tr>
<td>Ilex verticillata</td>
<td>Winterberry Holly</td>
<td>Afterglow, Bright Horizon, Sunset, Winter Red</td>
<td>Red fruit, wet soil tolerant, needs a male pollinator, 8’ height.</td>
</tr>
<tr>
<td>Myrica pensylvanica</td>
<td>Northern Bayberry</td>
<td></td>
<td>Aromatic foliage, grey berries, salt tolerant, 6’ to 12’ height.</td>
</tr>
<tr>
<td>Physocarpus opulifolius</td>
<td>Ninebark</td>
<td>Coppertina, Centerglow, Summer Lune</td>
<td>Multi-colored foliage, white flowers in May/June, 6’ to 8’ height.</td>
</tr>
<tr>
<td>Rhamnus frangula</td>
<td>Cutleaf Buckthorn</td>
<td>Asplenifolia</td>
<td>Fine textured foliage, 6’ to 8’ height.</td>
</tr>
<tr>
<td>Scientific Name</td>
<td>Common Name</td>
<td>Cultivars</td>
<td>Comments</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------</td>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td>Rhus typhina</td>
<td>Cutleaf Staghorn Sumac</td>
<td>'Laciniata'</td>
<td>Fine textured foliage, beautiful orange - red fall color, 8' height.</td>
</tr>
<tr>
<td>Sambucus nigra</td>
<td>Black Lace Elderberry</td>
<td>Black Lace</td>
<td>Dark purple finely cut foliage, white flowers May-June, 8' to 10' height.</td>
</tr>
<tr>
<td>Syringa hyacinthiflora</td>
<td>Early Flowering Lilac</td>
<td></td>
<td>Multiple flower colors, hardy, fragrant, mildew resistant, 10' to 12' height.</td>
</tr>
<tr>
<td>Syringa x perstonae</td>
<td>Preston Hybrid Lilac</td>
<td></td>
<td>Late blooming, fragrant, multiple colors, mildew resistant, 8' to 10' height.</td>
</tr>
<tr>
<td>Tamarix ramosissima</td>
<td>Pink Cascade Tamarisk</td>
<td>Pink Cascade</td>
<td>Rosey flower spikes all summer, feathery foliage, tolerant of poor soil, 10' to 15' height.</td>
</tr>
<tr>
<td>Viburnum burkwoodii</td>
<td>Mohawk Viburnum</td>
<td>Mohawk</td>
<td>Fragrant white flowers, orange-red fall color, glossy foliage, 6' to 7' height.</td>
</tr>
<tr>
<td>Viburnum carlcephalum</td>
<td>Fragrant Snowball Viburnum</td>
<td></td>
<td>Fragrant white flower in spring, reddish-purple fall color, 6' to 8' height.</td>
</tr>
<tr>
<td>Viburnum dentatum</td>
<td>Chicago LustreViburnum</td>
<td>Chicago Lustre</td>
<td>Glossy foliage, creamy white flowers mid-late June, 8' to 10' height.</td>
</tr>
<tr>
<td>Viburnum juddii</td>
<td>Judd Viburnum</td>
<td></td>
<td>Fragrant white flowers, nice fall color, 6' to 8' height.</td>
</tr>
<tr>
<td>Viburnum plecatum tomentosum</td>
<td>Maries Doublefile Viburnum</td>
<td>Mariesii</td>
<td>Flat topped white flowers, reddish purple fall color, 6' to 8' height.</td>
</tr>
<tr>
<td>Viburnum prunifolium</td>
<td>Blackhaw Viburnum</td>
<td></td>
<td>White flowers in May, bluish-black fruit in fall, excellent fall color, 12' to 15' height.</td>
</tr>
<tr>
<td>Viburnum x rhytidophylloides</td>
<td>Allegheny Viburnum</td>
<td>Allegheny</td>
<td>Dark green leather leaves, white flowers, red fruit in August, partial shade tolerant, 10' to 12' height.</td>
</tr>
</tbody>
</table>
Evergreen Trees (30' or Taller)

<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>Common Name</th>
<th>Cultivars</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Picea abies</td>
<td>Norway Spruce</td>
<td></td>
<td>Broad upright habit, fast growing, dark green foliage, grows 60' to 70'.</td>
</tr>
<tr>
<td>Picea omorika</td>
<td>Serbian Spruce</td>
<td></td>
<td>Narrow conical habit, green foliage with white banding on underside of needles, can grow to 50'.</td>
</tr>
<tr>
<td>Picea pungens</td>
<td>Colorado Spruce</td>
<td></td>
<td>Blue needle color, height to 50', dense habit, pyramidal shape.</td>
</tr>
<tr>
<td>Pinus bungeana</td>
<td>Lacebark Pine</td>
<td></td>
<td>Exfoliating bark, compact form to 30'.</td>
</tr>
<tr>
<td>Pinus parviflora</td>
<td>Japanese White Pine</td>
<td></td>
<td>Slow growth, picturesque habit, blue foliage, height to 30'.</td>
</tr>
<tr>
<td>Pinus strobus</td>
<td>Eastern White Pine</td>
<td></td>
<td>Native, bluish/green needles, fast growing, height from 60' to 70'.</td>
</tr>
<tr>
<td>Chamaecyparis nootkatensis</td>
<td>False Cypress: Nootka False Cypress</td>
<td>Glauc (blue/green foliage), Pendula (weeping Foliage)</td>
<td>Upright form, soft foliage, graceful. Height to 30'.</td>
</tr>
<tr>
<td>Thuja plicata</td>
<td>Arborvita: Grant Arborvitae</td>
<td></td>
<td>Pyramidal form, deer resistant foliage, fast growth, good for hedges and screens, native, height to 40'.</td>
</tr>
<tr>
<td>Tsuga canadensis</td>
<td>Hemlock</td>
<td></td>
<td>Native, graceful, pyramidal habit, can be used a screen/hedge, intolerant of alkaline soils, and dry conditions.</td>
</tr>
<tr>
<td>Scientific Name</td>
<td>Common Name</td>
<td>Cultivars</td>
<td>Comments</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------</td>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td>Chamaecyparis obtusa</td>
<td>Hinoki False cypress</td>
<td>Nana, Nana Gracilis</td>
<td>Frond like branches, slow growing, dwarf variety.</td>
</tr>
<tr>
<td>Chamaecyparis pisifera</td>
<td>False Cypress</td>
<td>Compacta Variegata</td>
<td>Dwarf, compact habit, yellow variegation.</td>
</tr>
<tr>
<td>Ilex Glabra</td>
<td>Inkberry</td>
<td>Densa, Shamrock</td>
<td>Compact form, dark green foliage, native.</td>
</tr>
<tr>
<td>Juniperus chinensis</td>
<td>Juniper</td>
<td>Nick's Compact, Saybrook Gold, SeaGreen</td>
<td>Excellent for foundations, sun exposure.</td>
</tr>
<tr>
<td>Juniperus conferta</td>
<td>Juniper</td>
<td>Blue Pacific</td>
<td>Dense blue-green foliage 12-15" height, hardy.</td>
</tr>
<tr>
<td>Juniperus Sabina</td>
<td>Savin Juniper</td>
<td>Blue Danube, Buffalo</td>
<td>Hardy, low growing.</td>
</tr>
<tr>
<td>Juniperus Squamata</td>
<td>Singleseed Juniper</td>
<td>Blue Star, Holdger</td>
<td>Slow growing, showy, compact. Blue Star: blue/silver foliage Holdger: yellow</td>
</tr>
<tr>
<td>Juniperus virginiana</td>
<td>Red Cedar</td>
<td>Grey Owl</td>
<td>Silvery-grey foliage height to 3’, sun.</td>
</tr>
<tr>
<td>Mahonia aquifolium</td>
<td>Oregon Grape Holly</td>
<td>Compactum</td>
<td>Glossy, holly-like leaves, yellow lower, blue fruit, sun or shade.</td>
</tr>
<tr>
<td>Picea abies</td>
<td>Norway Spruce</td>
<td>Little Gem, Nidiformis</td>
<td>Dwarf varieties of Norway Spruce dense habit to 3’.</td>
</tr>
<tr>
<td>Rhododendron</td>
<td>Rhododendron chionoides (white), P.J.M(lavender), olga mezitt (pink).</td>
<td>Compact, hardy forms of rhododendron, need acid, well-drained soil.</td>
<td></td>
</tr>
<tr>
<td>Taxus</td>
<td>Yew</td>
<td>Densiformis, Everlow, Wardii</td>
<td>Hardy, compact, shade tolerant.</td>
</tr>
<tr>
<td>Thuja occidentalis</td>
<td>Arborvitae</td>
<td>Aurea, Hetz Midget, Danica, Rheingold</td>
<td>Dwarf varieties of a arborvitae, dense, globular, no pruning required, yellow forms available.</td>
</tr>
<tr>
<td>Yucca filamentosa</td>
<td>Yucca</td>
<td>Bright Edge, Hofer’s Blue</td>
<td>Drought tolerant, stiff habit, flowers in June/July, salt tolerant.</td>
</tr>
</tbody>
</table>
Evergreen Shrubs Medium (4' to 6')

<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>Common Name</th>
<th>Cultivars</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Azalea</td>
<td>Azalea</td>
<td>Girard’s Crimson (red), Boudoir (pink), Girard’s Rose (pink), Karen (lavender), Cascade (white), Delaware Valley (white).</td>
<td>Evergreen azaleas, hardy, require well-drained, acid soil.</td>
</tr>
<tr>
<td>Buxus x.</td>
<td>Boxwood</td>
<td>Green Mountain</td>
<td>Pyramidal form, hardy, small leaves.</td>
</tr>
<tr>
<td>Buxus microphylla</td>
<td>Boxwood</td>
<td>Winter Gem</td>
<td>Large leaf, rounded habit.</td>
</tr>
<tr>
<td>Buxus Koreana</td>
<td>Boxwood</td>
<td>Wintergreen</td>
<td>Small leaf, hardy.</td>
</tr>
<tr>
<td>Chamaecyparis obtusa</td>
<td>Hinoki False Cypress</td>
<td>Fernspray Gold</td>
<td>Frond-like branches, yellow color, prefers moist, well drained soil.</td>
</tr>
<tr>
<td>Chamaecyparis pisifera</td>
<td>False Cypress</td>
<td>Golden Mop</td>
<td>Golden form.</td>
</tr>
<tr>
<td>Rhododendron</td>
<td>Rhododendron</td>
<td>Catawbiense Album (white), English Roseum (rose), Grandiforum (purple), Lee’s Dark Purple (purple), Nova Zembla (red), Roseum Elgans (pink).</td>
<td></td>
</tr>
<tr>
<td>Scientific Name</td>
<td>Common Name</td>
<td>Cultivars</td>
<td>Comments</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>------------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Chamaecyparis Mootkatensis Compacta Blanca</td>
<td>False Cypress</td>
<td>Compact Blue Nootlea, False Cypress,</td>
<td>Blue green foliage, 10' in height.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chamaecyparis obtusa</td>
<td>Hinoki False Cypress</td>
<td></td>
<td>Graceful, drooping branches, 15' to 20' height.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chamaecyparis obtusa</td>
<td>Fernspray False Cypress</td>
<td>Fillicoides</td>
<td>Fronid-like branches, needs protection, 10' to 15' height.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chamaecyparis pisifera</td>
<td>Boulevard false cypress</td>
<td>Boulevard</td>
<td>Soft texture, silvery-blue foliage, 12' to 15' height.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chamaecyparis pisifera</td>
<td>Variagated Thread False Cypress</td>
<td>Filifera Aureovariagata</td>
<td>Thread-like branches with light yellow coloring, 10' to 12' in height.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ilex meserveae</td>
<td>Blue Maid Holly</td>
<td>Blue Maid</td>
<td>Vigorous, large red berries, hardy, 10' to 12' height.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ilex meserveae</td>
<td>Blue Prince Holly</td>
<td>Blue Prince</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ilex meserveae</td>
<td>China Boy Holly</td>
<td>China Boy</td>
<td>Hardy, pollinator for China Girl, 8' to 10' height.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ilex meserveae</td>
<td>China Girl Holly</td>
<td>China Girl</td>
<td>Compact, heavy fruit set, hardy, 8' to 10' height.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ilex opaca</td>
<td>American Holly</td>
<td></td>
<td>Need male to pollinate female, 20' to 30' height.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Juniperus Chinensis</td>
<td>Keteleeri Juniper</td>
<td>Keteleeri</td>
<td>Wide, conical shape, full sun, 15' to 20' height.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Juniperus Chinensis</td>
<td>Fairview Juniper</td>
<td>Fairview</td>
<td>Upright, pyramidal form, 15' height.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Juniperus Chinensis</td>
<td>Spartan Juniper</td>
<td>Spartan</td>
<td>Dense, fast growth rate, pyramidal form 15' height.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Juniperus Virginiana</td>
<td>Emerald Sentinel Juniper</td>
<td>Emerald Sentinel</td>
<td>Columnar form, dark green with bluish highlights, abundant blue fruit, 15' to 20' height.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnolia grandiflora</td>
<td>Bracken’s Brown Southern Magnolia</td>
<td>Bracken’s Brown Beauty</td>
<td>Compact, hardy, shiny leaves, white fragrant flowers, 30' height.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnolia grandiflora</td>
<td>Little Gem Southern Magnolia</td>
<td>Liuttle Gem</td>
<td>Very compact, smaller leaves, fragrant white summer flowers, 18' to 20' height.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnolia virginiana</td>
<td>Greenbay Sweetbay Magnolia, Moonglow Sweetbay Magnolia</td>
<td>Greenbay, Moonglow</td>
<td>Semi-evergreen, fragrant white flowers, vigorous, hardy, 20' to 25' height.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Picea abies</td>
<td>Norway Spruce</td>
<td>Pendula</td>
<td>Picturesque weeping branches, 15' to 20' height.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Picea pungens</td>
<td>Montgomery Dwarf Blue Spruce</td>
<td>Montgomery</td>
<td>Slow growing, deep blue foliage, 8' to 10' height.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pinus flexilis</td>
<td>Vanderwolf’s Pyramid Limber Pine</td>
<td>Vanderwolf’s Pyramid</td>
<td>Narrow pyramidal habit with blue/green foliage, 25' to 30' height.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taxus media</td>
<td>Hicksii Yew</td>
<td>Hicksii</td>
<td>Columnar form, uniform habit, 12' to 15' height.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thuja occidenalis</td>
<td>Emerald Arborvitae</td>
<td>Emerald Sentinel</td>
<td>Narrow compact form, 12' to 15' height.</td>
</tr>
</tbody>
</table>
Evergreen Shrubs Large / Small Trees (8' to 20')

<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>Common Name</th>
<th>Cultivars</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thuja occidenalis</td>
<td>Emerald Arborvitae</td>
<td>Emerald Sentinel</td>
<td>Narrow compact form, 12' to 15' height.</td>
</tr>
<tr>
<td>Thuja occidenalis</td>
<td>Dark Green Arborvitae</td>
<td>Nigra</td>
<td>Dense, hardy, dark green foliage, 18' to 25' height.</td>
</tr>
<tr>
<td>Thuja occidenalis</td>
<td>Wintergreen Arborvitae</td>
<td>Wintergreen</td>
<td>Very narrow upright form, 20' to 30' height.</td>
</tr>
<tr>
<td>Thuja plicata</td>
<td>Giant Arborvitae</td>
<td>Giant</td>
<td>Pyramidal, deer resistant, fast growing, native, 35' to 50' height.</td>
</tr>
<tr>
<td>Thuja plicata</td>
<td>Spring Grove Giant Arborvitae</td>
<td>Spring Grove</td>
<td>Uniform, dense, deer resistant, 30' to 40' height.</td>
</tr>
<tr>
<td>Thuja canadensis</td>
<td>Sargent Weeping Hemlock</td>
<td>Sargentii</td>
<td>Broadly spreading weeping habit, 15' to 18' height.</td>
</tr>
</tbody>
</table>

Ornamental Grasses

<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>Common Name</th>
<th>Mature Height</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calamagrostis x acutifolia ‘Karl Foerster’</td>
<td>‘Karl Foerster’ Grass</td>
<td>5’ to 6’</td>
<td>Use in sun or partial shade.</td>
</tr>
<tr>
<td>Miscanthus sinensis ‘Gracillimus’</td>
<td>Maiden Grass</td>
<td>6’ to 8’</td>
<td>Use in sun or partial shade.</td>
</tr>
<tr>
<td>Miscanthus sinensis purpurascens</td>
<td>Purple Maiden Grass</td>
<td>3’ to 4’</td>
<td>Use in sun.</td>
</tr>
<tr>
<td>Panicum virgatum</td>
<td>Switch Grass</td>
<td>3’ to 4’</td>
<td>Use in sun.</td>
</tr>
<tr>
<td>Pennisetum alopecuroides ‘Hameln’</td>
<td>Dwarf Fountain Grass</td>
<td>2’ to 3’</td>
<td>Use in sun or partial shade.</td>
</tr>
</tbody>
</table>
Perennials

<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>Common Name</th>
<th>Mature Height</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Echinacea purpurea</td>
<td>Purple Coneflower</td>
<td>3'</td>
<td>Cluster together with Black-eyed Susans or ornamental grasses.</td>
</tr>
<tr>
<td>Hemerocallis ‘Stella D’Oro’</td>
<td>‘Stella D’Oro’ Daylilies</td>
<td>1½'</td>
<td>Cluster together or use with Dwarf Fountain Grass.</td>
</tr>
</tbody>
</table>

Groundcover

<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>Common Name</th>
<th>Mature Height</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ajuga reptans ‘Bronze Beauty’</td>
<td>‘Bronze Beauty’ Bugle Weed</td>
<td>6”</td>
<td>Use in sun or shade.</td>
</tr>
<tr>
<td>Hedera Helix ‘Thorndale’</td>
<td>‘Thorndale’ English Ivy</td>
<td>6” to 8”</td>
<td>Use in sun or shade.</td>
</tr>
</tbody>
</table>
Prune lower branches of large trees adjacent to pedestrian walkways to provide an 8-foot clearance.

Evergreen Trees

Use evergreen trees primarily for windbreaks, screening, backdrops, and winter interest. Consider security when placing evergreen trees, which lack the transparency of deciduous trees. Do not locate them too close to parking lot edges or pedestrian walkways.

Avoid locating evergreens that are susceptible to salt spray near walkways, roads, or parking lots.

Ornamental Trees

Use ornamental trees as accent plants, to provide human scale and interest and to furnish seasonal variation. Plant them in mass, either in groups or linear arrangements, to increase their visual impact. Occasionally, plant especially unique or attractive ornamental trees as individual specimens.

Ornamental trees at building entrances can highlight the entrance. If located near the corner of buildings, they help soften the building corner.

Shrubs

Shrubs have a variety of uses including: defining spaces and edges, providing seasonal interest and human scale, and screening unattractive views. Select shrubs that require little maintenance.

Ground Covers

Use ground covers in planting beds to tie together shrub plantings into a cohesive whole and also in difficult areas, such as steep slopes and very shady locations.

Example of bench that follows current UC site furniture standards.
Once a bed of ground cover is established, minimal maintenance is required, since ground covers are usually quite resistant to disease and pests.

Wildflowers

Establish wildflower strips in areas where frequent mowing is not desirable. Prepare a 10-foot wide strip adjacent to the public areas, and plant wildflowers by seed.

Allow areas behind the strip and away from the public areas to grow as an old field meadow.

Mow the wildflower areas once a year, in the fall, after plants are established.

Site Furniture Design Guidelines

Site furniture includes benches, tables, trash receptacles, bicycle racks, ash urns and bollards. The following guidelines should be incorporated into any new investment in site furnishings on campus:

Placement should be in highly visible locations to ensure its use, but should be integrated into the physical setting.

Locate furniture in front of a visible background such as a wall or landscaped area when possible.

Provide a paved surface to place the furniture on to facilitate its use and ease of maintenance.

Anchor the furniture to the paved surface to ensure safe use and to deter theft or vandalism.

Consider sun, shadows, precipitation, wind direction and drainage when placing furniture.

Ensure adequate lighting, activity and visibility if furniture could be used at night.
Comply with ADA standards in site furniture selection and placement.

Use a finish on all wood furniture that is compatible with the placement of furniture. With metal furniture use the most durable factory-applied finish available.

Choose a timeless design and compatible style for all site furnishings. While all site furnishings in all parts of campus need not be the same, site furnishings located near each other in certain areas of campus should be the same. For example, all benches in the academic area of campus should be similar and all benches located near the athletic fields should be similar, but the bench in the academic area and the bench in the athletic area need not be similar.

Benches

Locate benches along walkways, within gathering spaces, near drop-offs, adjacent to sports and recreation fields, and at building entrances. Provide a variety of arrangements that include individual benches for quiet contemplation and study as well as small groups of benches facing or adjacent to each other for conversation. Take advantage of good views whenever possible.

Place benches on paved surfaces that provide a minimum of 24 inches from the bench to the edge of pedestrian pathways. Allow a paved area of 30” x 48”, adjacent to benches, to accommodate wheelchair users and facilitate their interaction with different groups of users.

Provide informal seating opportunities, through the use of seat walls and planters, of appropriate height, width, and materials.

As more benches are purchased, the number of choices for the styles and colors could be more restricted for continuity around the campus, especially as new buildings are constructed.

Variation may be developed through color selections, and the addition or omission of backs and arms.

Tables

Locate the majority of tables near buildings, where there are opportunities for activities, such as eating and studying. Place tables near trees and landscaping, and with consideration of the microclimate of the area. Do not locate tables at corners of buildings, for safety reasons, and because they isolate the user from contact. Locate tables so they
can be easily serviced and maintained. Select tables, and place them to accommodate wheelchairs and allow interaction and use by all people. If smoking is permitted on campus, consider designating specific tables for smokers and non-smokers; although account for the prevailing winds so that smokers tables are downwind from nearby doors, windows or other tables.

Trash and Recycling Receptacles

Locate trash receptacles adjacent to sitting areas, eating areas, building entrances, gathering spaces, recreation and sports areas, and along major pedestrian pathways. Furnish sufficient numbers to provide convenience for waste disposal. Locate the receptacles a minimum of 10 feet away from sitting or eating areas, to reduce possible odors and insects. Single receptacles with both trash and recycling openings are preferable to multiple containers.

As new receptacles are purchased, they should match the style and color of the benches. The siting of trash receptacles can be integrated into plaza, walkway or building entrance design. For example, rather than placing the receptacle in the path of travel, they can be set back off the path surrounded by low ground cover. The receptacle remains easy to locate, but is less of an obstruction along the path.

Bicycle Racks

Bicycle rack styles should be compatible with the other site furniture.

Locate bicycle racks relatively close to primary destinations, but not necessarily right at building entrances or other areas of pedestrian congestion. Place bike racks contiguous to, but set back from, major pedestrian corridors.
Provide bike racks in the academic core, and in recreational and athletic areas. Pavement surfaces should be adequate to allow bikes to maneuver in and out of the racks.

Provide lighting and visibility at bike storage areas to ensure safety and security. Select bike racks which are tall enough so the frame of the bicycle can be secured to the rack, not just the wheels.

Ash Urns

Ash urns should be located at all building entrances and in designated exterior smoking areas. Furnish sufficient numbers and sizes of urns to accommodate demand and reduce smoking litter.

Ash urns should be placed on concrete pads to allow for easy clean up of smoking litter.

Ash urns should be of the same style as the benches and trash receptacles.

Bollards

Use bollards to create a separation between pedestrian and vehicular areas in places where there is the potential for confusion or conflict. Space bollards sufficiently close to define the space, and prevent intrusion of automobiles, but not too close to prevent passage of a wheelchair (minimum of 4 feet, maximum of 6 feet apart).

Select two bollard types: a decorative bollard for highly visible locations and a service bollard for less visible areas of the campus. Use removable bollards when occasional vehicular access is required.

Smoking Shelters

A wide variety of manufactured, pre-assembled smoking shelters are available. Styles vary from a simple roof and partial glass enclosure to models with exhaust fans, infrared heaters and full-height glass. Any shelter built should follow styles of other site furniture or architectural elements of adjacent buildings.

Locate smoking shelters near primary circulation paths or near entrance plazas, but at least 50 feet from an entry door but located such that they don’t detract from the architectural and landscaping feel of the space they are located. If possible locate them downwind from doors, windows and pedestrian routes.

Seat Walls and Planters

Whenever possible, provide seat walls to retain earth, define spaces, and provide informal seating. Use brick or pre-cast concrete materials that match the adjacent buildings or landscape elements. Construct seat walls 16 to 18 inches high and a minimum of 18 inches wide. Include planters in select high usage areas of the campus, and at

A seat wall design can vary in its look and feel, such as this one on UC’s uptown campus.
informal seating areas. Select plant materials and the numbers of planters which can be maintained at current levels of staffing and funding.

Outdoor Lighting Design Principles

Outdoor lighting increases visibility and safety for pedestrian and vehicular travel, highlights various site features such as plazas or courtyards, and expands the period of use for outdoor spaces. The following principles apply to all pedestrian and vehicular lighting:

Space light fixtures evenly to achieve desired levels of lighting based on manufacturer’s information and electrical designer’s input.

Increase the number of fixtures in potentially hazardous locations, such as stairs, intersections, and remote parking areas.

Locate plant materials to avoid blocking lights or creating hiding places, and maintain visibility and light levels by pruning plants regularly.

Periodically complete a night survey of the campus to identify areas requiring additional lighting and non-functioning fixtures.

Use energy efficient lamps, photocells, and timers in all fixtures to conserve energy and preserve the life of lamps.

Use outdoor specialty lighting sparingly, to accent plant material, building facades, building entrances, or signs. Ensure that lamp color and any visible fixtures are compatible with lighting standards for the campus.

Consider using only metal halide fixtures. This is an efficient light source, has a long life and does not wash out the color.

Two examples of pedestrian lighting are outlined above.
during the evening hours like high pressure sodium lighting. Incandescent fixtures have a short life span and are not energy efficient, high-density discharge (HID), high-pressure sodium, and mercury vapor lamps have an unattractive light color.

Road and Parking Lot Lighting

Install road and parking lot lighting at a mounting height of 22 to 26 feet. Locate light standards a minimum of 3 feet behind the curb on roadways; and if poles are in parking lots- provide wheel stops, concrete bases, or locate fixtures in a planting island to prevent damage to poles or vehicles that come in contact with them. Use only fixtures with glare control cut-off features.

Pedestrian Lights

Install pedestrian lighting, with mounting height of 10 to 16 feet. Poles should be mounted on a concrete base flush to ground and 6 inches greater in diameter than light base. Placement that is adjacent to walkways should be several feet from the sidewalk. Increase lighting levels along main walkways from parking lots to primary campus destinations for additional safety and comfort.

Installing banners on light poles can enhance the appearance.

Signage Design Principles

Please see the Clermont College Signage Plan Produced 2006. This is included in the appendix.

Detention / Retention Areas

Surfaces should be graded so that water runs off all points across natural drainage systems, or toward underground storm drains without increasing the rate or volume of runoff onto adjoining...
properties. The following options could be utilized to mitigate any increase in storm runoff caused by new impervious surfaces built on campus:

Underground detention systems

This consists of long lengths of underground storm pipe designed to hold excess runoff. These are ideal for sites which do not have a lot of space.

Surface detention basins

This type of basin, when designed appropriately, can contribute to the atmosphere of the campus by adding attractive ponds to the landscape. Any surface detention basins should be “wet,” meaning that there is water in the basin at all times and the degree of runoff simply raises or lowers the level of the basins. All wet basins should be equipped with a spillway to prevent overflows. These areas should be designed so that they blend with the natural landscape, can be used for passive recreation, and can be maintained with a reasonable degree of effort.

Creek detention system

This consists of long lengths of open channels for surface runoff.

Wetland areas

This option for retaining storm runoff has the added benefit of purifying the water before it is returned to the natural drainage system. These areas are also useful for educational and scientific purposes. Consideration of potential insect or odor issues should be accounted for when locating wetland areas.

Light Imprint Techniques

Utilize Light Imprint storm water management techniques to minimize surface water runoff volumes. See book titled *Light Imprint*. An example of a Light Imprint technique is to use pervious materials to allow rainwater to filter into the soil rather than be directed into catch basins and pipes.

Garbage Dumpsters

Locate dumpsters in service areas on concrete pads. Screen them from public view on three sides, with constructed elements compatible with the architectural character of adjacent buildings. Ideally, they would be enclosed with brick walls as seen in the image on this page.

Use landscaping for screening if it is of sufficient density and is evergreen material. Provide dark bronze, brown or black dumpsters to match other metal on

This garbage dumpster is hidden by brick enclosure and landscaping.
campus. Provide additional screening at existing dumpsters, if they are to remain.

Consider the placement, screening, and vehicular access to dumpsters during the design phase of any new facilities.

Utilities

Utilities are essential to the operation of a campus, providing water, electricity, gas, air conditioning or heating, and carrying away wastes and storm water. In addition, utilities are often one of the costliest capital expenditures on a campus. The adequacy, location, maintenance and screening of utilities have a tremendous impact on the quality of life on a campus. Proper planning and design should minimize any negative impacts on the visual quality of the environment.

Locate all ground-mounted utilities in unobtrusive locations, near buildings or site walls if possible.

Screen all utility structures with dense, evergreen landscaping, fences, or screen walls.

When possible, locate utility lines underground in common banks. If it is necessary to place utilities above the ground, co-locate lines on single poles, follow existing building lines, mirror existing utility lines, or follow the edge of tree lines.

Locate new utilities to minimize damage to existing or high priority outdoor areas, plantings and hardscape elements.

6.4 Architecture, Urban Design and Site Planning Guidelines

Introduction

The design of exterior facades, interior spaces, and locations within the campus and their physical relationship to other buildings contributes to the overall feel of the campus environment. The following guidelines provide a framework for how to design and locate buildings. Because design must consider many factors such as cost, function, and specific site restrictions, these guidelines are intended to be design parameters rather than rigid requirements. This section provides general design principles for new investment in the campus and for new buildings.

Consider pedestrian and vehicular circulation patterns, parking, service areas, existing or planned open spaces, relationship to other buildings and other long range plans for the campus as each new building design or expansion project arises.

Place new buildings at the locations identified in the development plans outline in this master plan.

Consider axis and alignments of adjacent exterior spaces and buildings in the design of new buildings. Main building entrances should be articulated via architectural elements and relate to corresponding exterior open spaces.

Maximize desirable views and minimize undesirable views to and from the building when determining final location of a new building.

Consider the final development of all phases when designing a building to be constructed in phases. Consider options...
for future additions or more stories when designing new buildings.

Designs for each façade of the building should appropriately reflect its context—being the front, rear or sides of a building. Keep in mind that a building may have more than one “front” façade.

Provide adequate storage for all necessary items relevant to the proposed function of a new building— including routine supplies, as well as dangerous chemicals and flammable items within the building envelope. Do not accommodate storage with small, detached buildings scattered around the campus. If storage cannot be accommodated within the building, it should be incorporated into the facilities management complex.

Create a visually unified campus by maintaining consistency in building form, massing, scale, and materials. Maintain a consistency of design among buildings that share common areas on the campus, such as the academic core etc.

Architectural Style

Create a campus with a building composition that has timeless qualities.

This can be accomplished by using recurring themes of material, form, and shapes in new buildings that may capitalize on variations of existing design precedents on campus, other campuses or buildings in the region. Unique or highly individual design elements should be considered carefully.

Building Massing, Volume and Shape

Massing refers to a building’s overall shape, size and proportions. Massing also refers to the complexity of the building’s form, whether the building is made up of one large form or a series of smaller shapes. In the design of new construction, relate the size of the plan, elevation and massing to be compatible with adjacent structures and to frame appropriate exterior spaces. However, buildings that terminate vistas or are deemed to be more dominant than a “background” building could have a taller elevation or have architectural elements that make it be the first building one’s eyes are drawn towards. New construction will need to marry any differences between prior construction themes to reinforce the unity of the campus and establish a human scale. New buildings should be separate, simple volumes with minimal projections for...
Avoid overly complex or aberrant forms that appear extraneous or misplaced. Roof equipment, penthouses, roof stairwells, and other protrusions should be incorporated into the building volume and not treated as appendices.

Background and Landmark Buildings

Background buildings are those buildings which are less dominant within the campus framework, yet create a backdrop for more dramatic or landmark buildings.

All buildings contribute to a framework for the campus by defining outdoor spaces, forming edges, and creating the urban design elements that influence how an exterior space feels to the pedestrian. Background buildings do not compete visually for attention. They can generally be described as calm, peaceful, reserved, traditional and sedate in design.

Landmark buildings are intended to be focal points, and will be more dramatic in design or incorporate elements that draw attention such as a tower or contrasting materials.

A well designed campus needs both types of buildings. Background buildings focus attention on the landscape,
important outdoor spaces, vistas and other significant structures. Landmark buildings or elements provide a campus hierarchy, which can be used to draw attention, end or direct views, or to symbolize the importance of the functions contained in the building. Function, location, and significance of use all determine whether a building should be a background or landmark building.

Building Relationship to Open Space

New buildings should help define and frame open spaces, as opposed to utilizing the surrounding “leftover space” as public and open space. This will visually and physically connect the indoor and outdoor spaces, creating a pedestrian friendly, comfortable, and inviting environment.

Building Placement

New buildings, additions to existing buildings and parking decks should be located as shown on the recommended campus development plans as included in chapter seven of this plan. The site plan outlines specific locations that help frame the existing primary quadrangle or “green” as well as frame a secondary quad as space needs increase. Parking decks are located on existing surface parking lots as shown on the site plan.

Building Height

Buildings and parking decks should be low in height reaching a maximum of three stories in height. (Current zoning regulations indicate a 40’ maximum height, however if taller buildings are desired, they should not exceed the height of the adjacent tree canopy on campus.)

Identify and take advantage of opportunities to integrate the buildings within the landscape. Identify programmatic elements that can benefit from a connection to the outdoors, either a direct physical connection such as a door, or a visual one such as a window with a view. Orient floor plans so that significant spaces can have important views, or be at the end of a visual axis.

Consider placement of windows from both a function standpoint from the inside and from the architectural façade design on the exterior, so that a balancing of the needs of both of these considerations when placing windows in a new building.

Building Rhythm/ Facade

Rhythm is the placement and pattern of the solids, voids or other visual elements on a building. Rhythm can be achieved using building volumes, fenestration, columns, structural, and decorative elements or any repetitive elements as

This plaza area is framed by a building on each side, which contributes to the comfortable feeling and intimacy of the space. This relationship between buildings is an important urban design principle to incorporate if functional outdoor spaces are desired.
well as by varying material colors. New buildings should look at the existing rhythms on campus and provide a harmonious balance between the existing and proposed architectural elements.

Building Transparency/Opaqueness

Transparency and opaqueness are extremely useful elements in controlling the amount of separation or connection between adjacent interior and exterior spaces. The amount of spatial definition can vary, from the complete separation provided by an opaque element, such as a solid wall, to the complete connection achieved by a transparent element, such as a sheet of glass, or the absence of any material between the spaces. In most cases, neither extreme is desirable, but rather a mix of separation and connection is the goal. A number of architectural and landscape elements, such as low walls, balustrades, colonnades, screens, and rows of landscape elements, can be employed to create a wide range of spatial separation or connection. Such elements provide definition for adjacent spaces, yet allow glimpses or views between the spaces. Other tools to achieve some separation, yet maintain connection between spaces include mezzanines, balconies, and changes in floor treatment or ceiling heights.

Scale

Scale refers to how building elements, such as windows, doors, or open spaces, are perceived in relation to other buildings, forms and people. The scale of buildings, spaces, volumes, and transitions affects the how a person feels when visiting, working, or passing through a space. Effective and timeless buildings incorporate “human scale,” urban design allowing the occupant or visitor to feel invited, warm, and welcome in the space or building. Increasing the amount of smaller scale details in buildings contributes to a more human scale. In addition, understanding that the height of adjacent buildings in relation to the width of the space between buildings is important to creating a comfortable space for people. The taller the building, the wider the open space can be.

Accent

Accents enliven and enrich designs. Accents are created by using contrast in color, texture, shape, mass, volume, rhythm, and scale. Some examples include a splash of violet flowers set against an ochre color wall, or a series of arched windows along a potentially monotonous corridor. Accents should be used with a purpose, for example, to indicate special areas in a building, or in the case of windows above, to provide a view along an important axis. Accents are also effective in delineating entries or the location of public areas in a building.

Accents on the new buildings are provided with brick patterns and structural elements. As new buildings are constructed, harmony between the two methods of accenting a building is to be expected. This might be done with both landscaping and/or building materials and forms.

Roof

The most predominant form of roof on campus is a linear, flat roof with a straight parapet. Most new buildings should follow this common, flat form. A roof design which deviates from this established form should have a specific purpose for doing so, either because of a
different use for the building (residential roofs are pitched) or to provide and accent or visual landmark. If other forms, such as pitched planes, or curvilinear planes are used, they should integrate smoothly with existing building elevations.

Use simple cornice elements to help buildings meet the sky and to enhance the horizontal line at the top of the buildings.

The utilization of green roofing systems would help to reduce energy costs, enhance building design, reduce stormwater runoff and complement the naturalistic setting.

Fenestration/Windows

New buildings should provide more daylight in public areas, work areas and study spaces. New buildings should also provide views to the outside environment where possible. Efforts to capture solar gain with low winter sunlight are also encouraged. New buildings on campus should generally use window styles and glass types similar to the existing types, however windows should follow the style of a building and the location of windows should balance the needs of the exterior façade patterns with the functions of interior spaces. Windows should be of square or vertical proportions.

Buildings should use some glazed elements that are similar to those on the existing buildings, but could use these elements in different ways. At the same time, care should be taken not to use too many different types of windows on one building, to avoid a haphazard or chaotic appearance.

Use double pane glazed windows with appropriate thermal breaks. Operable windows are encouraged, and may be achieved by using top hinged awning windows, which can be stacked or used in combination with fixed.

Accessibility

All facilities on campus should be accessible to all students, visitors, and staff without apparent barriers or conspicuous modifications. Accessibility accommodations should not be evident to the visitor, but should be easy to find and use by those who need them. Strategically place elevators and carefully design grades to minimize the need for ramps where possible. Consider all types of disabilities, and all ages in the design and modification of buildings. Most visitors to the campus will appreciate accessible elements, such as well-located rest areas, handholds and frequent handrails.
Building Materials

Buildings should use masonry, brick or blocks similar to what is currently found on the campus as precedents, but flexibility is allowed to take advantage of the wide range of colors, sizes, and textures of other materials available in order to accomplish design goals.

Doors and Openings

The main building entrance of new buildings should be a visible, dominant feature of the front elevation and correspond appropriately to pedestrian circulation patterns. Include an overhead covering and a vestibule at primary entrances for protection from the rain, to trap seasonally conditioned air and to lower utility costs. Use lighting and landscaping to highlight entrances. Wash wall surfaces of recessed entries with light to enhance visibility and safety. Buildings could have two main entrances if its location dictates. Entrances should relate to the scale and or context of their location (pedestrian or automobile side of building) but be of a similar character.

Provide a main entrance that conforms to ADA requirements. The use of a secondary building entrance as the only accessible entrance is strongly discouraged. Provide power-assisted doors at accessible entrances.

Roof Mounted Equipment

Consider all roof appurtenances, structures and related equipment in the design of buildings. Identify necessary penthouses, screens, and other mechanical elements during the programming and conceptual phases, to ensure a complete aesthetic integration of all visible forms and masses on the roof. Locate mechanical equipment within buildings or on roofs, where it is not visible, or can be screened. If mechanical equipment must be located outside of the building, screen it with plant materials or walls.

Building Systems

It is not always necessary or even desirable to conceal all of a building’s structural, electrical, plumbing, and mechanical systems. However, visible elements of those systems must be considered early and throughout the design process, so they can be integrated into the building design.

All exposed mechanical elements should also be integrated into the design. For example, locate building air intake and exhaust louvers in the least prominent places, but remote from the loading dock and drop off areas, to avoid intake of exhaust and garbage odors. Sizes and shapes of mechanical and structural elements should be compatible with other openings, patterns, and rhythms already established in the design of the building. The colors of vents, louvers, and other mechanical equipment should match other metal surfaces.

Color

Most new buildings on campus should follow the color palette of the existing buildings. An exception is when color is used as an accent or in a landmark building. Consider predominant colors in existing campus buildings landscape and the surrounding community when choosing building colors to blend in or contrast.

Illumination

Natural and artificial lighting can be used to create a sense of drama, to accent certain features of a building, to
downplay unattractive areas, and to increase a sense of safety and well being.

Consider how lighting can be used to highlight or downplay the forms, volumes, and spaces of a building.

Consider how natural light affects the overall composition of the building elements, as well as individual spaces.

Examples of how natural light can improve the learning environment include sunsets framed in western glass, and skylights flooding interior spaces with warmth in winter.

Consider climatic conditions such as seasonal solar orientation and prevailing wind direction as ways to reduce the demands on mechanical systems and make buildings and adjacent outdoor spaces more comfortable. Provide south facing windows to capture warming solar radiation in the winter, but plant deciduous trees on that same side to reduce solar penetration during the summer.

Encourage cross ventilation during the summer months by orienting buildings and placing windows to capture prevailing summer breezes. Limit window areas or service doors that face prevailing north or west winter winds, and protect north facing exterior walls with earth berms and evergreens.

Minimize building exterior surface areas to reduce heat loss in the winter and gain in the summer, by designing buildings that are compact rather than complex in shape.

Outdoor Spaces

Use the buildings to define useful outdoor spaces, and if appropriate, provide additional enclosure with landscaping and other site elements.

Furnish adequate lighting, furniture, and landscaping to make the outdoor spaces comfortable. Design all open spaces that are adjacent to buildings to have an attractive, finished appearance.

Consider the building height vs width of adjacent open spaces as one parameter of the design of the open space. Taller buildings adjacent to open spaces create more intimacy when paired with buildings on the opposite side of the open space that are of equal height.

Lower height buildings minimize the chance for creating intimate open spaces between buildings.
Chapter 7: Recommendations and Implementation Strategies
7- Recommendations and Implementation Strategies

The recommendations in this section are based on the space needs and data as outlined by UC’s space/facilities planning consultant in Chapter Five, balanced with the observations and input from college constituents, the design principles that evolved through the planning process as well as the functional space needs and priorities as determined by the college.

7.1 General Recommendations

Implement the recommended campus land use plan and campus development plans as shown on the next two pages. These two concept drawings address location of new buildings, additions, vehicular access, vehicular circulation, pedestrian circulation, parking, and open space. These are the first steps towards coordination of architecture and urban design within the framework of an overall campus site plan that strives to enhance the UC brand.

Implement the pertinent elements of the University System of Ohio’s Strategic Plan goals as outlined in Senate Bill 311.

Continue to implement the Clermont College Strategic Plan and its academic programming goals and strategies.

Implement the design guidelines as outlined in Chapter Six as new investments are made on campus.

7.2 Specific Recommendations

Future Land Use

The following land use map outlines the recommended future land uses for the campus. The land use map strives to balance the goal of preserving high quality woodlands in the “Woodland Preserve” areas by prohibiting development in these areas, while at the same time, allowing development on campus to grow organically near the

Legend

- Academic and Administrative
- Athletics & Recreation
- Woodland Preserve (No Build Zone)
- Entry Landscaping and Branding
- Parking

Continue to follow and implement the guidelines of the Signage Plan that was adopted in 2005.
existing core of campus. Parking is restricted to the perimeter of the campus. Campus entries are preserved for appropriate landscaping, aesthetic and UC branding elements. Additional development near the SAC building could be athletic/recreation related or other uses as determined in the future.

Additional development could also be accommodated in the northeast corner of campus with access from College Drive. Programming of this area is to be determined in the future based on updated priorities and programming needs of the college.

Development Scenarios

This master plan outlines two development scenarios. The first is a 10 Year Development Plan (M10) and the second is a Long Range Development Plan. Each plan is described and shown on a site plan on the next several pages.

Ten Year Development Plan (M10) Scenario *(see drawing on page 7-5)*

This scenario is based on accommodating an enrollment of 4,000 FTE.

The development program for this scenario includes building additional space, renovating existing space and providing additional parking to meet academic, administrative, student space and parking needs to support an FTE of 4,000 students. In addition, continued use of and evaluation of the UC East campus space to accommodate Clermont College space needs should be considered by decisionmakers.

A 39,000 gsf addition to the Student Services Building would provide new space for more classrooms and offices to meet existing and expanding space demands.

A renovation of approximately 5,500 sf in the Edith Peters Jones building would be completed to update existing classrooms.

A renovation of approximately 5,300 sf in McDonough Hall to convert the space from administrative offices to teaching labs.

Reconfiguration of the primary quad (which is the front door) on campus with a design and layout more compatible with pedestrian routes and connections. In addition, an outdoor plaza space to accommodate exterior seating/dining is proposed.

A new parking deck is proposed to accommodate the parking demands affiliated with a growing enrollment. In addition, a parking deck more efficiently uses existing land on campus and allows for preservation of highly desirable wooded areas on the perimeter of...
A larger 11” x 17” size drawing of the Ten Year Development Plan is located at the back of this chapter.

campus rather than building more surface parking lots that would encroach into highly desirable natural areas. Leasing of nearby off-campus surface parking as “swing” parking space would need to be coordinated as part of the construction. Depending on how large the deck is, it could provide a net gain of between 350 to 400 spaces.

Environmental management strategies for woodlands and ponds. With proper management strategies implemented, these natural features can be enhanced to be more sustainable. Woodlands can be thinned and ponds can be cleaned and re-configured to minimize future eutrification.

Establish pedestrian routes and trails for connectivity and for health and fitness purposes. A walking trail along the perimeter of campus or a hiking trail through wooded areas, as well as pedestrian connections or sidewalks along existing or new roads are proposed.

Create an amphitheatre near the West Woods building to allow for outdoor lectures, classes or discussions.
The exterior lining of the Student Activities Center building will need to be re-done or re-skinned within 10 years or so. This should be planned for if this facility is determined to be a priority space by the college.

Use the nearby Kings Way Church parking lot for additional short term parking needs such as leasing spaces during peak parking demand times that are projected for between 2009-2011 and or for use as “swing” parking spaces for when a parking deck is under construction on an existing surface parking lot.

Long Range Development Plan Scenario *(see drawing on page 7-7)*

The Long Range Development Plan scenario is based on accommodating an enrollment of approximately 6,000 FTE. This is the approximate maximum carrying capacity of the campus given the current limitations of the campus such as public access to the campus, parking availability and using the current class size.

This scenario includes building an additional approximately 242,000 gsf of academic, administrative and student space and providing approximately 1,200 to 1,600 new parking spaces—depending on how many parking decks are built. In addition, continued use of and evaluation of the UC East campus for Clermont College space needs should be considered by decisionmakers.

The following site plan drawing outlines a recommend layout of new buildings, additions to existing buildings, new connector roads, parking decks and other physical elements of the campus based on space and parking needs for an FTE of approximately 6,000 students. The highlights of the plan include:

- Building an addition to the West Woods building of approximately 22,000 gsf and also an addition to McDonough Hall of approximately 30,000 gsf.

A new 40,000 gsf building located on the west side of the primary quad. This building will help frame the quad.

Building a new connector access drive along the western and southern perimeter of campus. This will eliminate several pedestrian/vehicular conflict points that currently exist. In conjunction with the new access drive, eliminate the existing access between the drop off circle and the East parking lot.

Building two or possibly three parking decks along the southern perimeter of campus. Access to these parking decks would be from the new perimeter access drive.

Build three new buildings adjacent to the existing Student Services Building. The buildings would have a total of approximately 150,000 gsf of new space. These buildings would help frame a new secondary quad and be linked via an axis of greenspace to the primary quad to the north providing a connection to the parking areas on the southern edge of campus.

Create a Facilities Maintenance building in the southeast corner of campus to consolidate and expand shop space, provide adequate storage for equipment etc.
7.3 Recommendations on Sustainability, Circulation, Parking, Signage, Space and Site Furniture

The following recommendations are organized by topic and cover additional details than are outlined in the 10 Year and Long Range Development Plan drawings.

Sustainability

Implement sustainable design and construction strategies for new buildings, renovations or additions to existing buildings and as appropriate throughout campus to reduce energy consumption. Strategies should be compatible with LEED standards and as outlined by the United States Green Building Council (USGBC) to reduce the inefficient resource utilization.

Implement other sustainable design techniques regarding “green roofs, water use reduction, lighting, heating and cooling, landscaping and use of sustainable materials for paving, walks and drives to help reduce energy usage and preserve natural resources.

A larger 11” x 17” size drawing of the Long Range Development Plan is located at the back of this chapter.
Create and implement a campus recycling program.

Implement additional energy savings strategies such as fluorescent lights, motion sensors and others as appropriate.

Create and implement a timber lot, landscape and natural resource management program for the campus to enhance the natural environment. This would address wooded, watercourses and pond areas.

Use native plants and trees in landscaping projects.

Use environmentally sensitive products, water conservation initiatives, recycling, reduction of fuel consumption, alternative energy sources, drought resistant plants, efficient light fixtures and other sustainable techniques, as appropriate, to decrease the carbon footprint of the campus.

Use roof water for irrigation—even roof water collected off of existing buildings.

Where possible, implement “Light Imprint” guidelines for storm water management and utilize sustainable materials for pavement, drives, walkways etc.

Vehicular Access and Circulation

Create a new delivery route via Bauman Road to minimize traffic on the portion of Clermont College Drive. Coordinate signage if a new route is established.

Parking

Existing surface parking areas should be retrofitted with landscape islands and a “pathway” of connection to campus buildings as part of the design—to enhance the aesthetics, reduce the heat island effect and increase pedestrian safety.

A sidewalk should be installed along the north edge of the south parking lot to allow for a safer connection between parking lots further to the south and the campus core.

Sustainable design, materials and construction methods should be implemented for new parking lots or for revamped existing lots.

Additional parking should be built as a parking decks in order to minimize the impact on the campus natural environment. The height of a parking deck should be limited to three stories or no taller than the tallest building on campus.

Insecticidal soil injection (Merit) around the base of any Ash trees in the existing parking lot landscape islands should be considered as part of a comprehensive landscape management plan.

Irrigation of landscape islands within parking lots should be considered as funds allow.

The north/south axial landscape islands, that provide pedestrian connection and safety, in the East parking lot requires total renovation as the curbs are deteriorated and the red maples within these islands are declining due to years of soil contamination from salt, compaction to roots, and scorching of foliage from reflective heat. Implement re-design of these islands in conjunction with the addition of a sidewalk along the west border of the east parking lot providing pedestrian connection to the south parking lots.
Pedestrian Circulation

Improve signage and wayfinding systems, including mapping, signage on buildings, directional and regulatory signage throughout campus and on roads near campus.

Identify and develop new pedestrian and vehicular circulation patterns and routes that improve existing conditions and address future needs.

Pedestrian connections between parking lots, between buildings and within the open space should be safe and well lit.

Provide adequate and convenient parking for those with disabilities.

Current pedestrian circulation routes between the parking lots and main buildings requires crossing Clermont College Drive in two locations. Additional safety elements should be considered as the campus grows, such as adding sidewalks along Clermont College Drive and additional safe routes within parking lots.

Accessibility for Those with Disabilities

Ensure restroom doors have push button operators to allow for easy access for disabled persons. This should be addressed as buildings are renovated or as a separate project.

Any new handicapped parking areas should be located near buildings.

Signage

Implement the Clermont College Signage Plan created in 2005. As part of that, signage type and placement should be evaluated by the University’s Senior Environmental Graphic Designer as part of the Master Planning process.

A budget for new signage and replacement signage should be established.

Coordinate signage and branding with outside entities such as Village of Batavia and the Ohio Department of Transportation for areas signs that are in road rights of way near campus.

Lighting

Follow the guidelines outlined in the Design Principles chapter related to lighting. Specific issues addressed include standardization of light pole and fixture design, pole height and photometric output.

Regardless of type, all newly selected fixtures should be recognized by the United States Green Building Council as “dark sky” compliant. Whenever possible, new and retrofit construction should be sustainably influenced. Bega disc fixtures are recommended as a dark sky compliant style.

Interior lighting fixtures should be standardized within existing buildings. New buildings should match existing buildings’ light fixtures.

Site Furnishings

Implement the site furniture design standards as outlined in this master plan as the integration of site fixtures and furnishings into one organized ensemble is critical to the overall organized appearance of the campus. Resources may need to be identified if coordinated site furniture is a priority of the college.

Railings on steps, ramps, and patio spaces should be repaired where bent. Routine maintenance should include priming and painting of railings and rusted poles.
Pavement

Utilize a consistent finishing and tooling techniques (floated, broomed, control joint detailing) as inconsistent finishing techniques are apparent. A standard needs to be established.

Additionally, opportunities for installation of permeable pavement should be explored and chemical de-icing agents, other than salt (i.e., calcium magnesium) should be investigated to avoid accelerated deterioration/delaminating of concrete surfaces.

Landscaping

Creation of a landscaping, tree, lawn, woodlot maintenance, management and or replacement plan/program with resources dedicated to implement the plan over the long-term.

Installation of irrigation systems for lawn areas, landscape beds and any tree islands within parking lots will enhance the viability of these areas during periods of inconsistent rainfall and allow these areas to properly flourish. A watering plan should accompany any irrigated areas to outline an appropriate parameters for watering the landscape.

Until irrigation systems are installed, the use of hose and sprinklers is recommended, but due to large areas requiring coverage, these can be ineffective. The purchase of a water tank, pulled on the back of an ATV or tractor will facilitate deep root tree watering and fertilizing and allow for flexibility in watering outside the radius length of nearby hoses.

Balancing the planting of sustainable species with maintenance requirements should be considered as this can help direct resources to implement appropriate plantings and maintenance schedules.

Any declining trees should be replaced. If trees are removed, the space should be evaluated to determine quantity and need for replacement. A budget should be established to promote landscape revitalization.

Selected turf areas of high visibility/priority should be irrigated. In addition, a fertilization program should be initiated to improve turf density and recoverability.

All newly established lawn areas should be seeded using a blend of turf type tall fescue, which is a durable and less disease susceptible grass.

As part of a formal landscaping maintenance plan, identify key locations for installation and maintenance of high quality floral (perennial and annual) beds. These beds would be high priority locations given a high priority for periodic maintenance throughout the calendar year –such as adequate watering, fertilizing, mulching and other maintenance to ensure that these splashes of color are beautifully maintained.

All floral beds should be amended with organic material/“super soil” control release fertilizers, and soil polymer (i.e., “soil moist”) to assist in water retention.

Edges of landscape beds and walls should be evaluated for continuity and consistency within the campus and if a landscape plan is created.

Evaluate building foundations where landscape and building converge to identify areas that have bare spots and mud etc. The use of mulch, gravel and/or
groundcover would eliminate this condition.

Evaluate the condition of the existing pond by the west parking lot. Currently cat-tails are “suffocating” the entire water surface. Intervention to control invasive vegetation and reverse the eutrophication process by removing subverged vegetative matter and deepen the water is needed

Identify possible locations where the introduction of outdoor art can placed and experienced.

Safety

Continue to work with local governmental officials to seek the installation of traffic control devices or reconfiguration of the intersection at College Drive and Main Street in Batavia.

Space Needs

Create adequate student amenity space, office space, teaching space, administrative spaces and other amenities as determined by the college and as the data and space needs outlined in Chapter Five of this master plan document recommend. New space needs should be accommodated within the framework of the 10 Year Development Plan and the Long Range Development Plan as far as building locations. Actual programming of new buildings would be done separately from this master planning process.

Implement the space needs as determined for a 4,000 FTE campus as outlined in Chapter Five of this master plan document.

Classroom and Teaching Space

Provide teaching spaces that are comfortable, flexible, acoustically appropriate and contain upgraded technology so teaching spaces can be as effective as possible for both students and faculty.

Utilize existing spaces as efficiently as possible through expanded hours of course offerings or other strategies such as on-line courses.

7.4 Implementation and Financing of Priority Projects

Implementation of the plan is a function of matching project priorities as determined by the college, with funding streams that would pay for projects. Funding is generally from two types of sources, either State of Ohio funds or funds generated by the college. State funds are generally used for new building construction and renovations of existing facilities that have educational and administrative functions; while local college funds are used for parking (decks and surface lots), roads and amenity space such as bookstores or food service, as well as grounds and landscaping projects.

Based on the college’s priorities, coordination of funding requests to the state as well as the planning, design and construction of projects should be a collaborative effort in conjunction with the PDC department and the University Architect’s office.