UC Engineers Join Forces with Air Force Scientists
To Develop New Materials Using Algal Enzymes
Embargoed until: 2 p.m. Sept. 19, 2001
By: Chris Curran
Phone: (513) 556-1806
Photo by: Lisa Ventre
Graphic provided by: Stephen Clarson
Archive: Research News
Cincinnati - A team of engineers and scientists from the University of
Cincinnati and the Air Force Research Laboratory at Wright-Patterson Air
Force Base in Dayton, Ohio have demonstrated that a portion an algal enzyme
can be used to create novel new silica materials with wide-ranging potential applications.
Their research results will be published in the Sept. 20 issue of the
journal Nature.
The research group includes Professor Stephen Clarson and graduate student
Patrick Whitlock of the UC department of materials science and engineering
and UC alumnus Lawrence Brott, who carried out his Ph.D. with Professor
Clarson and is now at Wright-Patt. The other co-authors are David Pikas,
Rajesh Naik, Sean Kirkpatrick, David Tomlin and Morley Stone.
Together, they utilized a synthetic form of the active site of a key enzyme
from the diatom Cylindrotheca fusiformis and used this fragment to create
intricate silica patterns at the nanoscale level.
"Nature makes these complex structures already," said Clarson, noting the
increased interest in using biological systems to build new materials.
Diatoms are tiny algae which typically produce silica shells. "They form
these fabulous materials under such modest conditions," said Clarson. The
enzyme used by the diatom was discovered less than two years ago, but
Clarson and his collaborators have already found a way to take advantage of
the enzyme to create a new hybrid organic/inorganic nanostructure of silica
spheres.
Applications for these novel materials include new sensors and specialized
goggles for the military, including improved night vision goggles.
The specific device described in the Nature paper is a photonic system
which can produce ultrafast holograms.
Clarson said the research would be impossible without an interdisciplinary
team. "We have chemists, engineers and biologists working together. It's a
very exciting area of science, but you need team effort to succeed in this
type of research."
Long-term applications of materials also include
noninvasive cancer therapy, optical data storage and blue light lasers.
Clarson noted that the worldwide market for silicon-based polymers is currently $10 billion a year. "So, there are many applications with potential for major economic impact," he said.
The research was funded by more than $900,000 in grants from the Dayton Area Graduate Studies Institute
and the Air Force Office of Scientific Research.
|