CINCINNATI ZOO CHALLENGE

PROPOSALS TO ENRICH THE EXPERIENCE IN ANIMAL ENVIRONMENTS

PD 2030 | Inquiry to Innovation | Spring 2019
INTRODUCTION

The Cincinnati Zoo and Botanical Garden (CZBG) manages a holistic, evidence-based, and strategic approach to enhancing the experiences of animals in their care while creating a greater awareness of animal welfare with zoo visitors. During the spring semester the CZBG collaborated with multidisciplinary teams of UC students in this class to develop enrichment practices and devices for use in animal environments at the Zoo. Zoos and aquariums are increasingly utilizing science and technology to monitor and improve care of their animals. This collaboration is intended to bring a unique set of knowledge, skills, and fresh perspectives to enrichment proposals, particularly those related to engineering, technology, programming, and design. UC student teams were paired with animal care teams at the Zoo for a semester-long process where innovative enrichment products were designed and possibly implemented for selected species. The animal care staff presented the needs of the selected animal groups and worked to establish guidelines for feasibility and safety. In weekly meetings with students, CZBG staff mentored and collaborated with students to brainstorm, prototype, construct, and evaluate the final enrichment product or experience.

Environmental enrichment is an important tool for enhancing an animal’s welfare under human care. Environmental enrichment may consist of modifying the animal’s surroundings and/or providing products, tools, games, or, instruments for stimulation of or use by the animals. Not only can enrichment serve to create physical and cognitive development for zoo animals, but it can also stimulate unique species-specific behaviors, provide opportunities for choice and control, and offer educational and enjoyable experiences for Zoo visitors. Some of the more common forms of enrichment are:

PHYSICAL HABITAT

This form of enrichment takes the form of the features present in an animal’s environment. Often times these will mimic the naturally occurring features of an animal’s natural habitat such as running water or leafy plants.

DIETARY

Animals are provided with a source of food different from their normal diet to provide variety and stimulus.

COGNITIVE

Enrichment design to increase curiosity and engagement. Often puzzle feeders and toys are stuffed with food to encourage foraging behaviors and delay feeding.

OLFACTORY

This kind of enrichment is used to stimulate naturalistic behavior. It includes spraying of different types of odor in a habitat to influence behavior, making the animal more active and induce exploratory behaviors.

Source: http://cincinnatizoo.org/

During the spring semester the CZBG collaborated with multidisciplinary teams of UC students in this class to develop enrichment practices and devices for use in animal environments at the Zoo. CZBG staff mentored and collaborated with students to brainstorm, prototype, construct, and evaluate the final enrichment product or experience.
Rumination is a necessary part of digestion for giraffes, occurring mostly at night when there is no stress. This is similar to cows ‘chewing cud’.

Necking

When giraffe necks collide either gently or combatively. The former happens while nurturing and the later while fighting.

Nurturing

They rub necks with other giraffes to show friendship and affection usually between mothers and offspring.

Fighting

Occurs between males. A giraffe will swing his head back and forth building speed and momentum. He will use his head as a club typically striking the opponent in the neck, body or legs.

Licking

They have prehensile tongues which can be up to 18 inches long. When feeding, they use their tongue like a hand to strip leaves and bark off of trees.

Resting

They rest very infrequently (5-30 mins) however in zoos they may rest up to 2 hours. They may rest by sitting down, but are just as likely to rest standing up.

Stretching

As the tallest mammal on earth, giraffes spend much of their time stretching their necks out to browse for food nearly 20 feet in the air.

CURRENT ENRICHMENTS

The Cincinnati zoo has several enrichment installations based on the behavior of necking and eating. The hanging feeders are of various shapes and sizes with holes for stuffing them with food. Textual enrichments are for rubbing against or licking. They include brush boards, latchboards, bamboo toys and fire hoses. There are also plastic barrels, spoons and PVC pipes.

BEST PRACTICES

Textual Enrichment toys for giraffes include a variety of materials, objects, and surfaces for giraffes to rub against or lick. Windchimes, wooden logs, brushes and other objects can be hung up for giraffes to explore. These can add excitement and allow the giraffes to practice common necking and stretching behaviors.

Feeding Enrichment toys usually involve interesting containers and other food related obstacles. These are meant to challenge a giraffe to use its long neck and agile tongue to get food. Feeding enrichments keep giraffes eating slower and longer, which is more similar to their natural browsing tendencies.

FACTS

The enrichment designed was to extend the feeding time of the Masai giraffe, or the Giraffa camelopardalis tippelskirchi. The masai giraffe native to East Africa, and is the tallest animal in the world (13-17ft). Giraffes spend 16-20 hours per day eating and consume over 75 pounds per day. They use their long prehensile tongue to strip the leaves from the branches high off the tree (10-20 feet). In the wild, water needed to survive from the leaves they eat. The path to ensuring giraffe health is to enrich their diet. As a result, giraffes can easily be seen for 6-8 feet tall. The lifespan of the Masai giraffe is 25-30 years.

MASSAI GIRAFFE AT CINCINNATI ZOO

Cincinnati Zoo has four giraffes - 1 male (Kimba) and three females (CeCe, Tessa, and Zoey).

https://www.theanimalbehaviorcenter.com/top-10-checklist-healthy-animal-behavior/puzzles-enrichment-2/
https://images.app.goo.gl/JM4ke32jDdy4BifW9
https://images.app.goo.gl/yFAP2U6Ar21kWhww8
https://images.app.goo.gl/6XfiAjaR4gykDBow5
https://honoluluzoo.org/giraffe-treat-jar-enrichment/
MASSAI GIRAFFE

THE BROWSE BOX
Adina Buhfman, Lara Koenick, Olivia Loparo, and Maddie Samson

DESIGN GOAL
The goal of this enrichment proposal was to extend the feed time for the animal. Giraffes constantly eat, sleeping for only about 20-30 minutes at night. They require the least amount of sleep of all other land mammals. Giraffes main tool is their tongue, which can be up to 18 inches long. When feeding, a giraffe will use its tongue like a hand to strip leaves and bark off of trees. Male giraffes commonly rub their necks and heads against objects. We wanted to make sure whatever we designed was safe for this behavior.

PROTOTYPE BUILDING
The prototype was fabricated in the DAAP workshop. The drill press and hole saw was used to cut the large holes in the plexiglass that serve as the access points for the giraffes. We used the jigsaw to cut the door that allows the keepers to load and clean the box. A Dremel was used to sand all of the holes and any part of the box which the giraffes would be interacting. We pre-drilled and countersunk all of the screws and used screws followed by DAP glue to assemble the box together. After the box was assembled we sanded to ensure that all of the edges and corners were safe for the giraffes to lick and hit with their heads.

DESIGN PRINCIPLES

- Educational
- Educational
- Extended Feeding Time
- Tactile
- Stimulation
- Inclusive

HOLE FOR GRIZZLE
1/2 INCH THICK PLEXI-GLASS 1 X 1 FOOT CUBE BALLS HANGING INSIDE HANGING OPTIONS BALLS STORING INSIDE BOLTS 1/4" X 4" SCREW MOUNTING OPTIONS PLUGGED GLASS BOX TO USE GRIZZLES IN ACTION WOODS FOR ADJUSTMENT ENRICHMENT Puzzled Ball Activation Priority Food Latch Door For Loading/Unloading Latch Door Does Not Rust während the Browse Box successfully extended the time the giraffes ate, the time can still be improved on by making the box more difficult. This could be done by making the holes higher up or smaller. Different types of food used in the box may also play a role in determining their feeding time. The Browse Box can also be adapted for other animals, such as the okapi. One other component that may also be added to the Browse Box for the future is an "arm" that extends out from one of the outdoor posts to hold the box out so that guests can observe the giraffes using the box outside. This arm would also feature a pulley system for raising and lowering the box for keeper maintenance.

TESTING
The Browse Box was tested twice, once with Kimba and the other with Trisha, GeCo, and Zeno. This needed to be done due to the height differences between the giraffes. Both subject groups provided excellent responses to the introduction of the enrichment. Kimba responded positively by decreasing unwanted behaviors (like licking the viewing window) and increasing the time he spent standing and moving around while at the feeder. The females also responded positively by taking a longer time eating the food in the Browse Box than with normal feeders.
DESIGN GOAL
This enrichment can serve multiple purposes, focusing on animal exposure as well as conservation and education. The zookeepers would like to exhibit the giraffes eating habits to benefit the comprehension of the visitors knowledge as well as visual simulation of the giraffes eating habits. Other considerations are the use of recycled materials and creating an easy interaction between the device and the zookeeper.

DESIGN PRINCIPLES
- **Timed Feeding Enrichment**
- **Tactile Natural Browsing Behavior**
- **Guest Yours Tongue Out**
- **Guests View**
- **Tongue Use**

PROTOTYPE BUILDING
The design was taken a step further with the full-scale creation of a working prototype. The model was made entirely of Plexiglas. Secured together with glue and screws, the box feeder prototype also houses electronics that turn the front door on a timer throughout the day. There were many difficult hurdles our group had to overcome in order to create a working prototype. The largest being the plexiglass material itself with many weak points created when the material was screwed at multiple points.

IDEATION SKETCHES
"SMART FEEDER" RAISES AND LOWERS FOOD/GRAIN FROM BOTTOM WHEN GUEST DONATES/TIMER GOES OFF

TESTING
During the final stages of our prototyping, we began to notice the cracking of our Plexiglas faces inside the box. These cracks began to expand and by the next morning, the entire box was compromised and we were unable to test it at the zoo.

MOVING FORWARD
While we were at the zoo observing other students testing and presentations, we discussed with the zoo staff, keepers, and enrichment specialists about the next steps for our project. It was very clear we could not safely test it that day, but we wanted to make sure that we got an opportunity to showcase all of our hard work. We intend to stay in touch with the Cincinnati Zoo to get new materials and to rebuild the prototype in the future.
RHINOCEROS HORNBILL

DIET

Rhinoceros hornbills’ diet largely consists of fruits (mostly figs) and invertebrates, mainly ants, small animals, or insects. They are also known to pick up their food and eat by throwing their heads back and swallowing it whole.

CASQUE

Rhinoceros hornbills have a unique spongy appendage on the dorsal maxillary beak called a casque. Although its purpose is still debated, it is thought to enhance their vocalizations by acting as a resonating chamber and increasing the volume of their calls.

BONDING

Rhinoceros hornbills generally form monogamous pairs for life. This is not exclusive to their mating partners, and may consist of another friend or family member.

CLEANLINES

Cleaning their beak tips. It is important that small forked branches are available to them to accomplish this, such as cleaning food residue from the bill and wearing down the spongy appendage on the dorsal maxillary beak called a casque.

CURRENT ENRICHMENTS

BEST PRACTICES

DIET

Rhinoceros hornbills are provided with a variety of fruits and invertebrates. They are also known to manipulate and destroy any objects in their environment, which can be used as enrichment.

PHYSICAL/HABITAT

A grape being thrown up to the sprit e from the small opening.

BEHAVIOR STUDY

BREEDING/NESTING

Rhinoceros hornbills generally form monogamous pairs for life. The female lays her eggs inside a hollow tree cavity, and subsequently helps the male seal the entrance with a paste made of fruit, mud, and feces. The female lays her eggs inside a hollow tree cavity, and subsequently helps the male seal the entrance with a paste made of fruit, mud, and feces. The female lays her eggs inside a hollow tree cavity, and subsequently helps the male seal the entrance with a paste made of fruit, mud, and feces. The female lays her eggs inside a hollow tree cavity, and subsequently helps the male seal the entrance with a paste made of fruit, mud, and feces.

CURiosity

Rhinoceros hornbills are extremely intelligent birds, having only slightly lesser cognitive abilities than parrots. They are able to solve simple puzzles, manipulate their environment, and even have been known to occasionally eat small mammals and reptiles.

DIET

Rhinoceros hornbills’ diet largely consists of fruits (mostly figs) and invertebrates, mainly ants, small animals, or insects. They are also known to pick up their food and eat by throwing their heads back and swallowing it whole.

CasyQue

Rhinoceros hornbills have a unique spongy appendage on the dorsal maxillary beak called a casque. Although its purpose is still debated, it is thought to enhance their vocalizations by acting as a resonating chamber and increasing the volume of their calls.

BONdING

Rhinoceros hornbills generally form monogamous pairs for life. This is not exclusive to their mating partners, and may consist of another friend or family member.

CLEANLINES

Cleaning their beak tips. It is important that small forked branches are available to them to accomplish this, such as cleaning food residue from the bill and wearing down the spongy appendage on the dorsal maxillary beak called a casque.

CURRENT ENRICHMENTS

BEST PRACTICES

DIET

Rhinoceros hornbills are provided with a variety of fruits and invertebrates. They are also known to manipulate and destroy any objects in their environment, which can be used as enrichment.

PHYSICAL/HABITAT

A grape being thrown up to the sprit e from the small opening.

BEHAVIOR STUDY

BREEDING/NESTING

Rhinoceros hornbills generally form monogamous pairs for life. The female lays her eggs inside a hollow tree cavity, and subsequently helps the male seal the entrance with a paste made of fruit, mud, and feces. The female lays her eggs inside a hollow tree cavity, and subsequently helps the male seal the entrance with a paste made of fruit, mud, and feces. The female lays her eggs inside a hollow tree cavity, and subsequently helps the male seal the entrance with a paste made of fruit, mud, and feces. The female lays her eggs inside a hollow tree cavity, and subsequently helps the male seal the entrance with a paste made of fruit, mud, and feces.

CURiosity

Rhinoceros hornbills are extremely intelligent birds, having only slightly lesser cognitive abilities than parrots. They are able to solve simple puzzles, manipulate their environment, and even have been known to occasionally eat small mammals and reptiles.

DIET

Rhinoceros hornbills’ diet largely consists of fruits (mostly figs) and invertebrates, mainly ants, small animals, or insects. They are also known to pick up their food and eat by throwing their heads back and swallowing it whole.

CASQUE

Rhinoceros hornbills have a unique spongy appendage on the dorsal maxillary beak called a casque. Although its purpose is still debated, it is thought to enhance their vocalizations by acting as a resonating chamber and increasing the volume of their calls.

BONDING

Rhinoceros hornbills generally form monogamous pairs for life. This is not exclusive to their mating partners, and may consist of another friend or family member.

CLEANLINES

Cleaning their beak tips. It is important that small forked branches are available to them to accomplish this, such as cleaning food residue from the bill and wearing down the spongy appendage on the dorsal maxillary beak called a casque.

CURRENT ENRICHMENTS

BEST PRACTICES

DIET

Rhinoceros hornbills are provided with a variety of fruits and invertebrates. They are also known to manipulate and destroy any objects in their environment, which can be used as enrichment.

PHYSICAL/HABITAT

A grape being thrown up to the sprit e from the small opening.

BEHAVIOR STUDY

BREEDING/NESTING

Rhinoceros hornbills generally form monogamous pairs for life. The female lays her eggs inside a hollow tree cavity, and subsequently helps the male seal the entrance with a paste made of fruit, mud, and feces. The female lays her eggs inside a hollow tree cavity, and subsequently helps the male seal the entrance with a paste made of fruit, mud, and feces. The female lays her eggs inside a hollow tree cavity, and subsequently helps the male seal the entrance with a paste made of fruit, mud, and feces. The female lays her eggs inside a hollow tree cavity, and subsequently helps the male seal the entrance with a paste made of fruit, mud, and feces.

CURiosity

Rhinoceros hornbills are extremely intelligent birds, having only slightly lesser cognitive abilities than parrots. They are able to solve simple puzzles, manipulate their environment, and even have been known to occasionally eat small mammals and reptiles.

DIET

Rhinoceros hornbills’ diet largely consists of fruits (mostly figs) and invertebrates, mainly ants, small animals, or insects. They are also known to pick up their food and eat by throwing their heads back and swallowing it whole.

CASQUE

Rhinoceros hornbills have a unique spongy appendage on the dorsal maxillary beak called a casque. Although its purpose is still debated, it is thought to enhance their vocalizations by acting as a resonating chamber and increasing the volume of their calls.

BONDING

Rhinoceros hornbills generally form monogamous pairs for life. This is not exclusive to their mating partners, and may consist of another friend or family member.

CLEANLINES

Cleaning their beak tips. It is important that small forked branches are available to them to accomplish this, such as cleaning food residue from the bill and wearing down the spongy appendage on the dorsal maxillary beak called a casque.
RHINOCEROS
Rhinoceros

BIRD SHOWER
Frank Boles, Jordan Perrin, and Michael Malory

DESIGN GOAL

The shower enrichment device aims to increase the behavior of cleaning, which the hornbills rarely perform now due to the absence of moving water in their habitat. Additionally, the device aims to decrease the amount of time that the hornbills are resting and increase their daily activity. By allowing the birds to control the output of water, they will be able to clean themselves when they desire. The rope that the hornbills pull on will also serve as another way for the birds to clean their beaks.

DESIGN PRINCIPLES

- LOVE FOR WATER
- HIGHLY INTELLIGENT
- CONTROL OWN ENVIRONMENT
- EASY TO TAKE APART

PROTOTYPE BUILDING

- STAINLESS STEEL BAR
- STAINLESS STEEL CAMBER
- STAINLESS STEEL SPRING
- RUBBER O RING
- 3D PRINTED STOPPER
- STAINLESS STEEL CABLE
- ROPE

IDEATION SKETCHES

WATER IS HELD IN MAIN TANK
SPRING MAINTAINS SEAL
3D STOPPER AND O-RING ARE HELD IN TENSION BY SPRING
WHEN ROPE IS PULLED DOWN, THE SEAL ON THE O-RING IS BROKEN AND WATER IS ABLE TO FLOW FREELY

VIRTUAL RENDERING

SHOWING THE CONCEPT

TESTING

The birds were curious about the device. They interacted heavily with the chains on top, smacked heads on the body of the device. We changed the attachment so chain was on the bottom in an attempt to focus attention there, but they did not use it correctly. It will take time for them to get comfortable with it.

MOVING FORWARD

Paint the device brown to match the tree trunk. Paint the bottom bright red to look like fruit and encourage birds to move towards the bottom. Change the bottom attachment. A bright, colored rope might attract the birds more. Continue to try putting the device in at different times. Putting the device in at feeding time would encourage them to move towards the bottom log and hopefully notice the dripping water.
RHINOCEROS HORNBILL

PUZZLE FEEDER
Hannah Salmon, Bradley Davidson, Justin Meyer, and Jamie Rinderle

DESIGN GOAL
Over the course of the semester, the class was split into interdisciplinary groups to develop enrichment devices for select zoo animals. Our group used our collective knowledge and experience to create a puzzle feeder for a pair of Rhinoceros hornbills. The device was created to engage the birds for both the mental health of the animals and the education of zoo visitors.

DESIGN PRINCIPLES
- Self
- Foraging
- Teamwork
- Prototyping
- Ideation

HOW IT WORKS
1. Line up inner holes
2. Insert food
3. Scramble puzzle
4. Birds solve puzzle
5. Food drops
6. Birds eat

WORKING MECHANISM
The device consists of three conventional PVC pipes, modified and assembled to create a puzzle with multiple solutions. The two inner tubes each have holes centered within the largest tube and rotate freely of one another. The birds must grab ropes hanging from eyebolts on each tube to align the holes in the middle to free the food placed inside.

TESTING
During their first encounter with the feeder, the birds were extremely interested in the device, interacting with it almost immediately after it’s placement in the exhibit. Keepers have noted that the birds are drastically more active when the feeder is placed in the exhibit. Although the birds haven’t figured out how to use the device as intended, the keepers consider the device a success. Additionally, while they don’t work together to solve the puzzle they seem to take turns interacting with the feeder. They were able to reach some of the food, depending on the location of the feeder and they consumed this food relatively quickly.

MOVING FORWARD
The Rhinoceros Hornbill Puzzle Feeder intrigued the birds; however, they are unsure how to solve the puzzle. When the feeder was initially introduced, the birds were trying to eat the food from the top, which was a different way to solve the puzzle. If it had been known that the birds prefer eating by sticking their heads down, our final design would have turned out differently.
In the wild, little penguins spend about 80% of their time in the water. They can be out swimming for as long as a month. It’s no surprise that these swimming little penguins would live mostly in the water. They can be out swimming for as long as a month. In the wild, little penguins mate, they mate for life. They often need to be trained to use enrichment. They use their feet to make burrows underwater. Little penguins can also use their webbed feet to paddle and maneuver underwater.

Little penguins are not very intelligent and hence the enrichments they need to be simple and mostly food oriented. The only other type of enrichment for them can be environmental enrichments that allow them protection and shelter mimicking their natural habitat.

FACTS

Little penguins, also dubbed little-blue penguins, little blues, or fairy penguins, are the smallest penguin species in the world. They grow up to 1.5 feet tall and live in the warmer climates of Australia and New Zealand. Like their penguin cousins, little penguins are highly social creatures and spend the majority of their time in small colonies. In the wild, they use their feet to peck at rocks for shelter and to move in the water. They use their feet to make burrows underwater. Little penguins can also use their webbed feet to paddle and maneuver underwater.

BEHAVIOR STUDY

FEEDING

Hungry: Due to their active lifestyles, little penguins can eat up to 25% of their body weight in small fish and other prey.

DATA Collected: Little penguins will be given small meals in very short amounts of time. They are not fed quickly enough in captivity, they will walk away and refuse, even though doing so makes them starve in the process.

A Little Clueless: Little penguins presented with food quickly may not know how to react and begin to starve due to this. One zoo with smaller colonies of little penguins tend to hand-feed or just place their food in a bowl for them.

Burrowing

In their natural beach habitat, little penguins use their feet to make burrows in beachvegetation and create burrows to make nests. They can suffer from burrowing in captivity. If their environment is too rough and their feet stay in contact with it for too long.

CURRENT ENRICHMENTS

Flying Underwater

Little penguins can flap their wings underwater to propel themselves forward. This makes them look like they’re flying underwater.

Super Sentimental

Little Penguins, also dubbed little-blue penguins, little blues, or fairy penguins, are the smallest penguin species in the world. They grow up to 1.5 feet tall and live in the warmer climates of Australia and New Zealand. Like their penguin cousins, little penguins are highly social creatures and spend the majority of their time in small colonies. In the wild, they use their feet to peck at rocks for shelter and to move in the water. They use their feet to make burrows underwater. Little penguins can also use their webbed feet to paddle and maneuver underwater.

PHOTO: The Cincinnati Zoo is home to a colony of over 30 Little Penguins, one of the largest in captivity outside of New Zealand. One of the current live enrichment devices at the Zoo is a hamster ball filled with fish from the Out of Africa exhibit. The ZOO has been fake kelp. However, a past enrichment device used at the Cincinnati Zoo has been a fish-filled hamster ball given to the King Pancake penguins. They were able to eat the fish by pushing up and back out of the ball through the holes. The most effective in enriching penguins to enter the water. There is a correlation between size and intelligence with these birds. Thus, although the enrichment might appeal between penguin species, it was important to observe the reactions of Little Penguins towards the enrichment to determine how well it may be received.

BEST PRACTICES

Little Penguins are not very intelligent and hence the enrichments for them need to be simple and mostly food oriented. The only other type of enrichment for them can be environmental enrichments that allow them protection and shelter mimicking their natural habitat.

PHOTO: Little Penguins are not very intelligent and hence the enrichments for them need to be simple and mostly food oriented. The only other type of enrichment for them can be environmental enrichments that allow them protection and shelter mimicking their natural habitat.

Burrowing

In their natural beach habitat, little penguins use their feet to make burrows in beachvegetation and create burrows to make nests. They can suffer from burrowing in captivity. If their environment is too rough and their feet stay in contact with it for too long.
LITTLE PENGUINS

FOOD TROUGHS
Jay Nible, Karen Hufford, Ellora Jaggi, and Jenna Nobbe

DESIGN GOAL
The primary goal of the design was encouraging feeding and foraging behaviors in the water. The design includes a PVC circuit carrying a stream of dead fish for feeding. The design also assists in gradual transition to feeding live fish. Our trough acts as a floating bowl for penguins to feed from. With the addition of a pond pump and a hose, the penguins can participate in eating moving fish. As the dead fish move downstream within the trough, penguins are encouraged to actively catch the fish. The fish are recycled in the PVC loop until they are eaten by the penguins.

DESIGN PRINCIPLES

IDEATION SKETCHES

NATURAL FEEDING SWIMMING INTEREST VISITOR VISIBILITY

PROTOTYPE BUILDING
The prototype was fabricated by cutting divots into PVC and sanding them to create smooth, bordered sides of a trough for fish to travel along. Pool noodles were sewn into the bottom of the trough pieces as the flotation device, while an angled hole was drilled into one of the trough sections to allow tubing and a pond pump to be attached. The trough pieces were attached to PVC connectors of the same size in order to form a loop, although these were not permanently attached to promote modularity of the enrichment. Future modifications can be made in the form of using clear PVC for visibility and aesthetics or again, manufacturing more pieces and changing the shape of the enrichment.

A HOSE CONNECTED TO A POND PUMP FLOODS A CURRENT THROUGH THE HALVED PVC TUBING.

4 INCH PVC TUBING IS CUT IN HALF TO ALLOW EASY ACCESS FOR PENGUINS TO FORAGE AS FISH MOVE THROUGH THE TROUGH.

4 INCH PVC CONNECTIONS KEEP THE TUBING PARTS ATTACHED.

AN ANGLED SLOT ALLOWS THE HOSE TO PUSH WATER THROUGH AT THE OPTIMAL DIRECTION.

TESTING
With the Little Penguins notoriously being so scared of new objects in their environment, the feeding trough must be slowly integrated into their habitat. The first stages are placing it in the pond without fish or a pump. Before placing the trough in the water, the penguins were sitting on one end of the shore. Shortly after the trough was installed, they moved closer to it, observing from shore. Some penguins were even curious enough to swim nearby.

MOVING FORWARD
Once the penguins are accustomed to the PVC trough, keepers can choose to put fish into a floating trough or to place it on land as a bowl. The trough may also be placed in the indoor habitat for penguins to feed out of, replacing the bowl they have used in the past. With this gradual integration, the keepers and zoo staff hope to eventually install the fully functioning trough feeder, with fish moving with the current. The trough can be expanded by enrichment teams to create different shapes or larger streams - possibly including pipe with transparent walls as well.

4 INCH PVC CONNECTORS KEEP THE TUBING PARTS ATTACHED.

NATURAL FEEDING SWIMMING INTEREST VISITOR VISIBILITY
KELP FORESTS
Isaac Busken-Jovanovich and Madeleine Lyon,

LITTLE PENGUINS

DESIGN GOAL
A modular kelp forest provides the Little Penguins with an aquatic stretch of varying textures and surfaces that integrates an element of the Little Penguins’ natural habitat with their captive one. Due to the modular nature of the design, the forest can be arranged in a variety of patterns within the pool - at various depths of water and floor configurations. Instead of the captive Little Penguins who feel no desire to swim and fulfill its natural, species-appropriate behavior, the Little Penguins will have the option of swimming through fronds of “kelp” with a mild curiosity for the new addition to its enclosure.

PROTOTYPE BUILDING
The artificial kelp are cut from an aquatic felt material in a mimicry pattern and attached to a central ‘stipe’ stalk. Ping pong balls are used to imitate the pneumatocysts (gas bladders). Each kelp frond is then clipped with a carabiner to an eye-bolt screwed into the anchor. The anchor itself is a flexible tube, made of 4” firehose, filled with sand and sealed on either side with firehose brackets. Each anchor section is 1 meter in length. A 4” diameter metal ring is carabinered to the end of the firehose bracket.

TESTING
The little penguins were more afraid of the Keepers installing the kelp than they were of the kelp itself. Once it was situated near the land bridge in section B, some curious individuals would stare at it. Those who dove into the water or were in the water already would simply swim by it or circle around it on some occasions. A couple of adventurous penguins touched the kelp and nibbled at the bottom leaves.

MOVING FORWARD
We hope that the zoo can fabricate more of these kelp units based off of our plans, as they are quick to assemble and easily scalable. As we move on, we wish that testing can continue with other penguin species such as the African penguins who may find more interest in the kelp. As the new exhibit for the Little penguins is opened, we hope that there may be several kelp units fabricated to provide a full forest for the Little penguins in their new home.
BEHAVIOR STUDY

Malar Tiger

Malayan Tigers are nocturnal predators, and rely heavily on camouflage to ensure the success of their ambush-style of hunting.

HIDING

As tigers spend 18-20 hours of the day sleeping, they need a place to do it where they will be hidden from harm, such as other tigers. This instinctive behavior causes them to form dens in caves, trees, or dense vegetation.

CLIMBING

Young tiger cubs are known for climbing trees and playing in high places. As they get older and larger, they mainly explore climbing around wild terrain and large rocks.

SWIMMING

Malayan tigers are the only of the big cats that like to swim. They use this to cool down, travel quickly, or overpower their prey into the water, where they can easily make a meat meal.

SMELLING

Malayan Tigers are nocturnal predators, and rely heavily on camouflage to ensure the success of their ambush-style of hunting.

CURRENT ENRICHMENTS

Cincinnati Zoo enrichment items include boreal balls, large, durable plastic balls, and PVC logs. The keepers use scent in the form of spray-on scents and scent pipes for the tigers to investigate and play with. The keepers also make cardboard enrichment devices for the tigers to tear apart and destroy. One popular enrichment for tigers in captivity focuses mostly on hunting, swimming, and eating. Scent marking can be utilized in activities involving toys and enriching items. To add enrichment to feedings, keepers might put main ocassions in cardboard enrichments or scent pipes. They might twitch them, smash meat chips into pinecones, or make blood popsicles. Boomer balls and related plastic items are extremely durable and in common use. Natural enrichment items such as vegetation, logs, ice, and ice balls are also popular to add in tiger habitats.

BEST PRACTICES

Popular enrichment for tigers in captivity focuses mostly on hunting, swimming, and eating. Scent recognition is important while hunting and can be utilized in activities involving toys and enriching items. To add enrichment to feedings, keepers might put main ocassions in cardboard enrichments or scent pipes. They might twitch them, smash meat chips into pinecones, or make blood popsicles. Boomer balls and related plastic items are extremely durable and in common use. Natural enrichment items such as vegetation, logs, ice, and ice balls are also popular to add in tiger habitats.

AT CINCINNATI ZOO

The Cincinnati Zoo is home to three Malayan Tigers named Bati, Chira and Izzy. They were born at the zoo in February 2017. All three — Batari, Chira and Izzy — were raised by a foster dog and keepers after their mother’s separation and death at the zoo. Cincinnati Zoo works with the Malayan Tiger Survival Plan, an organization that supports conservation initiatives to help keep the Malayan Tiger species healthy.

Malayan tigers' range is restricted to the Malay Peninsula and the southwestern tip of Thailand. Malayan tigers are critically endangered, and there are only an estimated 250-340 left in the wild, due to habitat loss, human conflict, and poaching (WWF). While closely related to the Indochinese and Bengal subspecies of tigers, they were proven to be their own subspecies through DNA testing in 2004 (WWF). Tigers form dens in caves, trees and dense vegetation, which help keep them hidden and safe. In general, tigers are both nocturnal and crepuscular, meaning they are active 12 hours a day. In general, tigers are both nocturnal and crepuscular, meaning they are active 12 hours a day. In general, tigers are both nocturnal and crepuscular, meaning they are active 12 hours a day.
DESIGN GOAL

This enrichment design aims to address the decrease in physical activity for tigers in captivity. The wobble platform provides a new device for the tigers to utilize in play and when bored with their other enrichment. With this enrichment, they are required to engage their muscles when interacting with this platform due to the mobility of it. While walking or jumping, a tiger needs to stabilize itself through its core and legs to prevent toppling. The hope is that this design will increase the duration of physical activity while the tigers are located in the indoor holding.

DESIGN PRINCIPLES

- **ENGAGE MUSCLES**
- **IMPROVE BODY STABILITY**
- **PLAY ACTIVITY**

PROTOTYPE BUILDING

Platform is made from plexiglass with a protective skirt around the outside in order to avoid injury to the tigers due to pinching. The platform uses springs with a spring rate of 50 lbs. per inch. The final platform will be placed in the tiger’s indoor exhibit to provide them with enrichment while they are not in the yard.

DESIGN INSPIRATIONS

- [Cylinder Balance Boards](https://www.amazon.com/Revolution-Balance-Board-Trainer-Blue/dp/B00AAXD6X0)
- [Universal Portable Half Ball Balance Board](https://www.dx.com/p/Universal-Portable-Half-Ball-Balance-Board-2065465)
- [Spring Balance Board](https://odditymall.com/spring-balance-board)

TESTING

During the observation for enrichment implementation, it was found that the majority of the time was spent investigating the platform via sniffing. The closest behavior observed to target behavior (on platform with all four paws) was standing on the platform with front two paws. This was also the least frequent behavior in the data sampling for the first ten hours, but increased significantly over the last five hours. This indicates that over time, the tigers more frequently exhibited behaviors similar to the target behavior. After the enrichment has been in exhibit longer, the tigers may be more likely to stand completely on top of it.

MOVING FORWARD

Future implications for this design may include habitat transferability between indoor and outdoor exhibits or scalability for different species. This same design can be used to provide enrichment for other big cats similar in size to the Malayan tigers. It can easily be moved to one of the outdoor exhibits for the tigers so that there is more space for interaction and visitors can experience something different. The design can easily be scaled up or down by changing dimensions, acrylic thickness, and spring strength to be implemented in habitats of other species such as bears or small mammal species.
MALAYAN TIGER

Garrett Krueger, Zach Fickenworth, and Deepansha Pahwa

DESIGN GOAL

Our enrichment device is intended to elicit active hunting behaviors while also reducing detrimental stereotypic behaviors. Combining novel and multisensory stimulation will better simulate hunting conditions and prey, therefore prompting hunting behavior. Novel stimulation*, being defined as new or differing enrichment devices, has long held value among zoo keepers. Our modular device allows insert attachments for the variations in enrichment. The original concept was to fill a boomer ball with a large variety of enrichment devices for the tigers, such as wheels and activity tracking for the keepers.

DESIGN PRINCIPLES

For the purposes of testing enrichment devices with the tigers themselves, a new outer shell was designed out of PVC. The inner container can be switched between a boomer ball or the new design. Our final design was realized with the fabrication of our prototype out of PVC.

*NOVEL STIMULATION: Novel stimulation reduces habituation, which is when animals get used to the enrichment and the interactions between the animal and the device decreases over time (Dilbone and Sheriff). Novel stimulation also reduces stereotypic behaviors and increases activity levels, which are both primary goals of the care of zoo animals.

TESTING

While there was not much observation time of the tigers with the device, the initial test was promising as the tigers interacted mildly with the device and showed interest in the various sounds played. However, their interest was typically not held for long and we did not test every component. We speculate that the ability to place a variety of objects will keep the tigers entertained longer both in the short and long run.

MOVING FORWARD

The modular nature of the device is a highlight. With sufficient engineering expertise and time, inserting more devices in the module is possible. As for the PVC design, we would recommend investing in clear PVC as it would allow for even more modular aspects. For example, any lights would be able to be placed inside, or various objects the tigers might be visually attracted to. It would also allow for a GoPro camera insert to be utilized in the design. Still, the design is mostly optimized for creating new opportunities for the tigers, and the keepers are free to use the shell to put whatever they wish in with the tigers.
FEEDING ZIPLINE
Bennie Peters and Brenna Truax

DESIGN GOAL
For our project, we designed and built a motorized zipline to enrich the tigers during meal time. The zipline will fly back and forth across the exhibit as the tigers chase it, simulating how they would chase prey in the wild. Additionally, the tigers will have to jump and attack the carcasses in order to receive their meal. This enrichment will be a great way for the tigers to use their predatory instincts and also get healthy exercise. Malayan Tigers are able to reach speed bursts of up to 50 miles per hour. They are also able to jump more than 30 feet, which gives them a huge advantage over an animal trying to escape their attack.

DESIGN PRINCIPLES
- CHASING FREY
- HIGH SPEED RUNNING
- JUMPING ABILITY

PROTOTYPE BUILDING
The motor box and clamp box were constructed by first water jet cutting stainless steel, then the parts were welded together, and finally the sides were gridded down for smooth finisher. The other parts were ordered and the whole design was fabricated at Maker’s Space of the UC 1819 Innovation Hub.

IDEATION SKETCH
- MOTOR
- ZIP-LINE
- TROLLEY
- CARDBINER
- MEAT CLAMP

The meat clamp contains an internal mechanism which allows the bait to release from the system when the tiger grabs the bait, thus allowing the tigers to use their predatory instincts and jump and attack the carcasses in order to receive their meal. This enrichment will be a great way for the tigers to use their predatory instincts and also get healthy exercise.

TESTING
Unfortunately due to the large scale of our project, we were unable to conduct an evaluation on our actual design. The initial testing showed the motor, ESC, and battery combination was under-powered. The initial mounting points on the trolley shifted the center of gravity above the axis making the system inherently unstable. The meat clamp behaved as expected, and safely releases bait as a downward force is applied.

FUTURE PLAN FOR INSTALLATION
In the future additional attachments could be used for fastening as that is currently the most challenging part with using the clamp. The motorized portion requires the largest amount of rework. The motor which was chosen initially couldn’t provide the amount of torque necessary to move the entire system. This is in part due to the rework and strengthening of all the components adding weight to the system.
CHEETAH

BEHAVIOR STUDY
Cheetahs spend only about 12% of their time in motion, while the remaining 88% of their time is spent resting.

STALKING
Their dark spotted fur acts as a form of camouflage so they can more effectively stalk prey at close range. The distinctive black line that runs from the inner corner of their eyes to the outer corner of their mouth prevent glare from obstructing their vision.

SOLITARY
Cheetahs are usually solitary creatures, though social groups can consist of a mother and her young or coalitions of two to three males that are typically brothers.

CHASING
Once they lock onto a target and have stalked close enough, they begin the chase. Sleek, flexible bodies with long legs, non-retractable claws, and a muscular tail allow them to reach high speeds (as much as 70 miles per hour) to catch their prey.

KILLING
Once they are in striking distance, they swipe at the legs of their prey and quickly close their windpipe to suffocate them before consumption. The killing and eating process can happen incredibly quickly for fear of kleptoparasites (i.e. lions and hyenas encroaching on their kills).

RESTING
Their high metabolic activity to participate in such high-speed chases also requires immense compensation via resting – otherwise, these cheetahs can only run for short distances (about 220 to 330 feet) before overheating becomes an issue.

CURRENT ENRICHMENTS
The Cincinnati Zoo, like many zoos, use a mechanized lure system to provide enrichment for the cheetahs. This space is a long, grassy stretch of land including a small central pond abutted by two climbing structures, a grassy mound of earth on the left-most side, and several entrance points for the animals showcased during the encounter. This stretch of land was specifically tailored to the Cheetah Encounter, and it provides an adequate space for the cheetahs to run at elevated speeds for short periods of time both for their enrichment and that of the visitors.

BEST PRACTICES
Cheetahs (Acinonyx jubatus) are large cats that primarily reside in Northern, Southern, and Eastern Africa. They are considered vulnerable species according to the IUCN Red List of Threatened Species. There are a few ways an institution that help them run and catch prey in the wild. Having a large, naturalistic enclosure allows them to take short breaks for a short period of time. Lastly, they have been shown to not have an immediate need for elevated food bowls and feeding platforms, but for quick starting and stopping. Cheetahs can only run at high speeds for about 1.5-2 minutes before needing to rest. They can accelerate from 0 to 60 mph in 3.4 seconds, and their stride can be up to 7.6 meters.

FACTS
Cheetahs (Acinonyx jubatus) are large cats that primarily reside in Northern, Southern, and Eastern Africa. They are considered vulnerable species according to the IUCN Red List of Threatened Species. Cheetahs have many adaptations that help them run and catch prey in the wild. They can accelerate from 0 to 60 mph in 3.4 seconds, and their stride can be up to 7.6 meters.

The Cincinnati Zoo, like many zoos, use a mechanized lure system to provide enrichment for the cheetahs. This space is a long, grassy stretch of land including a small central pond abutted by two climbing structures, a grassy mound of earth on the left-most side, and several entrance points for the animals showcased during the encounter. This stretch of land was specifically tailored to the Cheetah Encounter, and it provides an adequate space for the cheetahs to run at elevated speeds for short periods of time both for their enrichment and that of the visitors.

CHEETAH Run" is the most popular Behavioral Enrichment for Cheetahs. The other enrichments include scents, hanging food, play balls and Enclosure Rotation.
LURE SYSTEM
Sarah Cunningham and Kathya Acharya

DESIGN GOAL
The goal of this project was two-fold: to modify existing brake installed by the Cincinnati Zoo and to design an entirely new lure system. The main differences between the old design and the new design are the motor, the controls, and the cover. The new design aimed to provide better controls over the speed of the lure system and its efficiency, while also improving the safety of the system for the trainers.

DESIGN PRINCIPLES

SPEED CONTROL SAFETY EFFICIENCY

PROTOTYPE BUILDING
There is a speed control motor that adjusts power to maintain a set speed. It also has an automatic overload protection sensor, which means there is a fail safe if something goes wrong. The controls have an on/off switch, a switch to change direction, and a speed adjustment knob.

ISSUES WITH EXISTING LURE SYSTEM
Unbalanced Brake Drum
Unbalanced clearance between brake drum and brake band
Lack of clearance between brake band bolt and the spool
Brake band on Unbalanced surface

TESTING
The braking mechanism was successfully modified, no longer slowing down the system due to internal friction and pulling the lure at a reasonable rate for a cheetah to chase – a 14 second run time that fell within the normal range of 8 to 17 seconds. In addition, the system reduced stopping time significantly, proving to be a safer and more efficient means of ending the run – stop time reduced from 2.6 seconds on average to 0.75 seconds.

MOVING FORWARD
The current modification serves as a temporary method for the Cincinnati Zoo, which can be turned into a more permanent solution utilizing the theoretical redesign of the system. The future of this project lies in the creation of a wholly modified system, which takes advantage of continuous motor controls to preserve the motor and help prevent backlash which can cause significant delays during shows (detracting from visitors’ experiences).
CREDITS

STUDENTS
THE BROWSE BOX
Maddie Samson, Medical Sc.
Olivia Loparo, Biomedical Eng., Mechanical Eng.
Lara Koenick, Industrial Design
Adina Ballaban, Biological Sc.

THE WINDOW FEEDER
Jack Buehler, Industrial Design
Ben Merk, Mechanical Eng.
Andie Ticknor, Industrial Design

BIRD SHOWER
Frank Bolek, Chemical Eng.
Jordan Perrin, Mechanical Eng.

THE PUZZLE FEEDER
Maddie Samson, Medical Sc.
Olivia Loparo, Biomedical Eng., Mechanical Eng.
Lara Koenick, Industrial Design
Adina Ballaban, Biological Sc.

FOOD TROUGH
Jay Hubble, Industrial Design
Karen Hufford, Chemistry (ACS)
Ellora Jaggi, Industrial Design
Jenna Nobbe, Biological Sc.

KEEP FORESTS
Isaac Busken-Jovanovich, Industrial Design
Madeleine Lyon, Graphic Design

LURE SYSTEM
Sarah Cunningham (former), Mechanical Eng.
Kathy Acharya (former), Biomedical Eng.

MODULAR DEVICE
Garrett Krueger, Architecture
Zach Fickenworth, Finance and Business Analysis

TIGER ZIPLINE
Bernie Pieters, Mechanical Eng.

FACULTY AND COLLABORATORS
Frank Russell - Director, Community Design Center and the Niehoff Urban Studio, UC
David Orban - Animal Excellence Manager, CZBG
Jen Meeks - Dive Safety Officer, CZBG

Jenna Poynter - Zookeeper, CZBG
Aimee Owen - Zookeeper, CZBG
Kim Klostermaan - Zookeeper, CZBG
Cody Sowers - Zookeeper, CZBG
Rickey Kinley - Zookeeper, CZBG
Michelle Kuchle - Zookeeper, CZBG
Michael Land - Zookeeper, CZBG
Danielle Holste - Zookeeper, CZBG
Linda Castaneda - Zookeeper, CZBG
Alicia Sampson - Zookeeper, CZBG

Special thanks to xxxxxx

Edited by Frank Russell | Arindam Roy | Published: Cincinnati, May, 2020