TABLE OF CONTENTS

Section 1. SERVICE ENTRANCE AND TERMINATION—OUTSIDE PLANT Page 3

Section 2. TELECOMMUNICATION ROOMS AND CABLE TERMINATION Page 13

Section 3. VOICE AND DATA OUTLETS—INSIDE PLANT WIRING AND RACEWAYS Page 28

Section 4. TELEVISION CABLE AND ELECTRONICS CLASSROOM OUTLETS Page 45

Section 5. PROTECTION, GROUNDING, AND BONDING Page 55

Section 6. INSPECTION, TESTING, AND DOCUMENTATION Page 57

Section 7. FIRE STOPPING Page 69

Section 8. LOCAL AREA NETWORKS Page 74

Section 9. WIDE AREA NETWORKS Page 77

Section 10. FIBER OPTIC TECHNOLOGY Page 79

Section 11. MISCELLANEOUS AND SPECIAL SITUATIONS Page 83

Section 12. CODES, STANDARDS, AND REGULATIONS Page 85

Section 13. WIRING, CABLE, AND NETWORK STANDARD EQUIPMENT Page 87

Section 14. LOCATION TEMPLATES Page 97

Section 15. GENERAL UNIVERSITY INFORMATION Page 103
1 SERVICE ENTRANCE AND TERMINATION -- OUTSIDE PLANT

1.1 GENERAL

1.1.1 INTRODUCTION

This section provides the necessary guidelines to install service entrances to buildings and information for the termination of cables entering buildings. Topics addressed are voice, data, and video.

All outside plant voice, data, and video cabling, conduit, and manholes shall be designed and/or approved by the Office of Digital Technology Solutions Telecommunications Infrastructure, contact Blake Stahl at stahlb@ucmail.uc.edu or Dan Drury at drurydy@ucmail.uc.edu. UC Public Safety is responsible for the campus Fire Alarm System.

1.2 CABLE

1.2.1 GENERAL

Prior approval and coordination with DTS Telecommunications Infrastructure, UC Planning+Design+Construction Facilities Management, and other concerned parties are necessary when the situation requires pulling a cable through a conduit occupied by another cable.

All cables associated with the campus telecommunications network (telephone, data, LAN, WAN, campus TV, and fiber optics) shall be connected and disconnected by the DTS designee.

Only those cables specified will be installed in any facility.

All trunk cables requiring splicing will be done under specified system splicing instructions that will be determined on a site-specific basis. The proper manufacturer-recommended splice closure for the splice at hand
shall be used. Project specifications will indicate the name and title of the person responsible for supplying and installing trunk cabling and splice closures. When splice-on connectors are used, a standard Ortronics fiber “patch” cabinet may be used.

There shall be no cable with voltages higher than 48 volts in communications duct banks.

All copper trunk cables entering a building shall be terminated on protection blocks. Only solid-state protectors shall be used. See specifications in Section 5. The contracted installer will be responsible for furnishing and installing protectors. Repair or replacement of damaged cable is the responsibility of the party involved in causing the damage. All damages shall be reported immediately to DTS Telecommunications Infrastructure. UC Planning+Design+Construction shall also be notified for damages due to activities of project contractors and damages due to activities other than project contractors.

Legacy Cabling: For existing buildings and installations, any MAC work (Moves/Adds/Changes) will match EXISTING cabling infrastructure for data or voice.

Any new buildings or large renovations (entire MDF/IDF, IT Closet, entire floor) will follow the latest copper and fiber standards (Cat 6A copper and Single-mode). Any cabling drops will be considered “data”

1.2.2 **LABELING**

The owner of the cable shall identify all cables in each manhole with a designated cable number and pair counts. The tag shall be made of brass or plastic designed to be used in such an application.

Whenever possible, all abandoned cables shall be removed from tunnels, manholes, and conduits. If it is not feasible to remove the abandoned cable, it shall be tagged as abandoned, with appropriate labeling as above, and shall be reported to DTS Telecommunications.
Infrastructure and Facilities Management.

1.2.3 AERIAL

Most university low voltage cabling is underground. No aerial wiring shall be installed on campus unless DTS Telecommunications Infrastructure and UC Planning+Design+Construction approve. Information shall be obtained from DTS about the ownership of aerial cables and poles.

1.3 CONDUIT

1.3.1 GENERAL

Conduit sizing and quantities between buildings shall be determined by DTS and will be communicated to UC Planning+Design+Construction, the Division of the University Architect for inclusion in the project specifications. Minimum requirements are outlined in the following paragraphs.

All campus buildings shall be connected to the nearest manhole/tunnel or a new manhole/tunnel if one is to be installed.

Prior approval and coordination with DTS Telecommunications Infrastructure, UC Planning+Design+Construction, and other concerned parties are necessary when the situation requires any modification to the conduit system.

Repair or replacement of damaged conduit is the party responsible for causing the damage. All damages shall be reported to DTS Telecommunications Infrastructure, contact Blake Stahl at stahlb@ucmail.uc.edu or Dan Drury at drurydy@ucmail.uc.edu, UC Planning+Design+Construction, and Facilities Management immediately.
1.3.2 REQUIREMENTS

All new facilities or renovations will be required to meet minimum requirements. The minimum voice, data, and video conduit required for each building shall be 4 conduits.

- Two shall be four-inch, Type C, 4-cell Multi-Guard Multi-Cell PVC Raceway, or Maxcell Equivalent
- Two shall be four-inch, Schedule 40, PVC.

No more than the equivalent of 180 degrees of bends is allowed in a run, including offsets.

A Kevlar pull string or a measuring tape shall be installed and tied off in each conduit. Pullwires used outside of facilities shall be stainless steel or copper; #12 AWG or strings shall be of the Kevlar type. Pull wires/strings used inside facilities and flow ducts shall be nylon measure tape.

In cases where the building has direct access to the tunnel system, i.e., a tunnel section terminates at the building; cable trays of equivalent capacity may be used in place of the 4 or more conduits normally required for the size and type of the building.

To allow for future communication upgrades, including reducing multi-pair copper cable counts and increasing optical fiber media counts; a specific number of conduits shall be dedicated for that purpose. And to further that effort and achieve maximum conduit utilization, those conduits shall contain flexible, fabric innerduct.

TEXTILE INNERDUCT MANUFACTURES
A. Provide products offered by Maxcell Group

1. Substitutions will not be acceptable.

 Standard Outdoor Textile Innerduct: Micro (33mm), 2-inch, 3-inch, and 4-inch single or multi-cell polyester/nylon textile innerduct containing 1250lb polyester flat woven pull tape.

 Detectable Outdoor Textile Innerduct: Micro (33mm), 2-inch, 3-inch, and 4-inch single or multi-cell polyester/nylon textile innerduct containing 1250lb polyester flat woven pull tape, and a solid copper, polyvinyl color coated conductor (19AWG minimum) for tracing and rated for a minimum of 6 amps and 600 volts. The conductor shall be placed in the sidewall edge fold of the textile sleeve.

 Size descriptions of the Maxcell product refer to the minimum conduit size allowed for placement.

 Multiple packs of Maxcell may be installed in a single conduit. Up to 3 packs of 3-inch, 3-cell (9 pathways) may be placed in an empty 4-inch conduit. Similarly, up to 2 packs of 4-inch, 3-cell may be placed in an empty 4-inch conduit.

 Maxcell may be placed in an occupied duct with a fill rate of 50% or less.

Textile Innerduct Installation

 Make a 2” incision, approximately 18” from the end of the textile innerduct. Pull out and cutoff approximately 2 feet of pull tape. Thus, allowing the pull-tape ends to retract back into the cells.

 Using approximately 6 feet of pull tape, tie a non-slip knot to the incision. Then tie 3 to 6 half-hitch knots down to the end of the textile
innerduct. Apply black vinyl tape over all knots and the end of the textile innerduct. Using a Bow Line knot tie a swivel to the end of 3 feet of pull tape. For multi-pack installations, one swivel is sufficient but stagger each textile innerduct.

Using a Bow Line knot, attach the pull rope located in the rigid conduit to the other end of the swivel. Install textile innerduct – ensuring that no twist is introduced to the innerduct. Provide suitable textile innerduct slack in the maintenance holes, hand holes, pull boxes, and at turns to ensure there is no kinking or binding of the product.

1.3.3 UNDERGROUND

All underground conduits and ducts, rigid or PVC, added to a project shall be added in groups of 2, 4, 6, 8, 10, 12, or more. Communications duct shall be 66.6 percent four-inch Schedule 40; 33.3 percent four-inch Type C 4-Cell Multi-Guard Multi-Cell PVC Raceway, with a minimum of four-inch and two-inch 4-Cell Multi-Guard. Under no circumstances is single underground conduit runs acceptable.

All underground conduits, duct banks, and raceways shall be concrete encased (3500 psi minimum). Additional reinforcement is to be used when crossing roadways or when recommended by UC Planning+Design+Construction.

The minimum separation for communications ducts and power ducts in a joint trench environment is 3 inches (8 cm) of concrete, 4 inches (10 cm) of masonry, or 12 inches (30 cm) of well-tamped earth. All communications ducts shall also be a minimum of 48 inches from steam pipes and condensation lines if crossing perpendicular. The minimum depth for buried conduit and ducts is 30 inches below the grade or underside of the roadbed to the top of the duct/conduit.

When communication ducts run parallel to steam lines a minimum of a two-foot separation is required to avoid conduction of heat. All other duct separations must comply with the National Electric Code.
Rigid steel conduit, encased in reinforced concrete, shall be used in any location subject to abuse, such as under slabs or foundations.

All underground conduits shall be four inches in diameter.

All necessary precautions shall be taken by the contractor during construction to prevent the lodging of dirt, plaster, or trash in all conduits, tubing, flow ducts, fittings, and boxes. All conduits in floors, concrete or below grade, shall be swabbed free of debris and moisture before wires are pulled.

UC Planning+Design+Construction and Facilities Management shall approve all diggings and excavation on the UC campus.

1.3.4 TUNNELS

Where conduit, ducts, or cable trays are in tunnels, they shall be kept at least 48 inches from parallel runs of flues, steam pipes, hot gas pipes, hot water pipes, or any other utility line which is hot during normal operation of the facility it serves. All conduit sections crossing steam lines shall be rigid and shall be provided with a means of insulation from the steam lines unless a written exception is provided by UC Planning+Design+Construction.

1.3.5 CONDENSATION

Duct banks shall be pitched to drain towards manholes.

1.3.6 TRAPS

All conduits, tubing, raceways, ducts, and duct banks shall be installed in such a manner to insure against the collection of trapped condensation. Raceway runs shall be arranged to be void of traps.

When conduit passes through the exterior concrete walls of any facility, the entrance shall be watertight. Provide pipe sleeves in the concrete
with a 1/2-inch minimum entrance seal.

All conduits shall have watertight connections and be sloped properly so they will drain into the manhole and away from the building entrance.

1.3.7 TYPES

Gas pipes and water pipes shall not be used for conduit under any circumstances.

Three types of conduits are accepted for underground conduit systems. Project specifications will detail the types of conduits to be used in the various locations covered by the project. The conduit shall be painted with two coats of coal tar base paint or have an epoxy coating applied by the manufacturer.

- **Schedule 40 PVC conduits.** This conduit shall be installed with reinforced concrete casing. No PVC conduit is acceptable without reinforced concrete.

- **Type C Multi-Guard Multi-Cell PVC conduit.** This conduit shall be installed with reinforced concrete casing. PVC conduit without reinforced concrete is not acceptable.

 Field wrapping or coating shall extend to six inches above ground level where conduit is installed by a pole or side structure or inside a pedestal.

 The duct envelope shall be rectangular in cross-section and be a minimum concrete thickness of three inches around any conduit. The duct envelope shall be sized and placed as shown on construction documents.

 A minimum of four # 4, steel reinforcing rods shall be installed in all duct bank envelopes. Where conduit enters a building or a manhole the rears must be dowelled into the existing structure to prevent
shearing of the conduits in case of settlement.

All conduits and ducts must be terminated with a bell end at the manhole, facility, or other termination points. Where trench walls are unstable or the trench width is wider than the envelope shall be formed as required. Duct spacers shall be provided at a maximum of seven feet intervals. Conduit shall be anchored at three-foot-six-inch intervals and at each spacer to prevent duct floating during concrete installation.

Each duct run shall be done with a continuous concrete pour. Broken pours are not allowed without written exception from UC Planning+Design+Construction and provided #4 rebar or larger is extended twelve inches beyond the end of the envelope at the end of each day’s pour and all stub-outs.

A yellow color agent shall be sprinkled on top of the concrete used for underground communications ducts. The color agent is to comply with industry standards. Marker tape shall be placed on top of the concrete duct casing.

1.4 MANHOLES

1.4.1 GENERAL

1.4.2 INTERIOR

Manholes shall not be smaller than 4 feet wide, 6 feet long, and 7 feet high.

The maximum depth of all manholes shall be ten feet from the manhole cover to the bottom of the manhole unless otherwise approved by DTS Telecommunications Infrastructure and Planning+Design+Construction.

The manhole cover and opening shall be 36 inches in diameter and shall be engraved with the word "TELEPHONE." Manhole covers shall not have recessed handles that pull out when needed for removal. DTS
Telecommunications Infrastructure & UC Planning+Design+Construction shall assign the manhole number.

The maximum distance between manholes connected in any one run shall not exceed 400’.

All materials used in a manhole shall be resistant to corrosion. All steel shall be galvanized, or zinc-coated. All racks in manholes shall be PVC galvanized or zinc-coated steel.

Manholes shall have pulling rings opposite the conduit entrance on each wall.

1.5 DRAWINGS

1.5.1 GENERAL

Detailed diagrams can be obtained from the University of Cincinnati’s Planning+Design+Construction. Refer any questions specifically not addressed in this document to DTS Telecommunications Infrastructure.

2. TELECOMMUNICATION ROOMS AND CABLE TERMINATION
2.1 OVERVIEW

2.1.1 DEFINITION

Telecommunication rooms are special-purpose rooms that house telecommunications equipment and wiring. These rooms have specific requirements due to the nature, size, and complexity of the equipment and wiring housed in the room.

For any questions or concerns with Telecommunications rooms and cable termination contact DTS Telecommunications Infrastructure

2.1.2 SPACE

There may be up to three different types of telecommunications rooms within a building, each supporting critical functions as part of the building wiring and communications systems. In general, each room must be large enough to accommodate the wiring and equipment that will be located within them, plus additional space for growth. The three types of rooms are:

- The Main Cross-Connect Room (MCR); sometimes called the Main Distribution Frame (MDF); there is normally only one MCR per group of buildings. On the campus of the University of Cincinnati, this room is also known as the “Node Room” and is the distribution point for the backbone fiber and copper infrastructure feeding that group of buildings. The Node Room houses the VoIP system, Analog Gateway, and Core network-related electronic equipment. This room may also serve as an Intermediate Cross-Connect (IC) or Building Communication Room (BCR). See Section 14 for a typical room layout.

- The Building Communication Room (BCR), and Building Equipment Room (BER), are sometimes called the Main Distribution Frame (MDF). There is
normally only one MDF per building. This room may serve, as a Telecommunications Room (TR). MDF room size must be 10’x10’ or larger. See Section 14 for a typical MDF room layout.

- The Telecommunications Room (TR), Telecommunications Closet (TC), Intermediate Distribution Frame (IDF), Wiring Closet, or Horizontal Cross-connect. There shall be at least one network stack per floor due to E911 designations. More than one TR per floor is required when the terminated wiring distance between any communications jack and the TR exceeds 295 feet (90 meters). Typical TR size is a must be 10’x 10’ or larger. See Section 14 for a typical TR layout.

2.1.3 GENERAL

Project specifications will indicate who is to be responsible for furnishing, installing, and terminating the various types of communications cabling, racks, panels, and other items specified in Section 2. Unless otherwise noted, the project electrical contractor will be responsible.

All work shall comply with the National Electrical Code, Ohio Building Codes, DTS Communications Standards, and UC Planning+Design+Construction Design Guidelines. Telecommunications rooms may vary according to the size of the building, the number of floors, tenancy characteristics, and telecommunications services required. Consideration of the future needs of the facility and end users is necessary.

Other than those exclusively servicing the telecommunication room in which it is located, electrical panels are strictly prohibited in telecommunications rooms. Services that are not telecommunications-related are prohibited in these rooms. This includes but is not limited to, janitorial services, supply storage, etc. There will never be an exception to these restrictions. Because of the growth of emergency and security systems campus-wide and the size of the associated equipment, Fire
and other alarm panels are now installed in a separate room usually adjacent to the TR, or BCR called an EIDF. Systems installed in this room also include CATV, Door Access, and any building automation cabling or equipment.

Unless otherwise specified, a 50 percent growth factor shall be built in and provided in each riser. Consequently, any cable, conduit, or cable tray work about telecommunications must be designed and/or approved by DTS. Project specifications will include this growth factor.

To facilitate proper installation, routing, and placement of cables, wires, premise equipment, and E911 routing calls, telecommunication closets should be located on each floor, as close as possible to the middle of the building and stacked one above the other, unless otherwise instructed or approved by DTS Telecommunications Infrastructure. Architects must pay special attention to telecommunication closet locations to overcome distance limitations. The total distance of the conduit path, from the outlet to the TR, BCR, or MCR, when the BCR or MCR also serves as a TR, shall not exceed 295 feet (90 meters) including termination loss. If a construction or renovation project has a floor plan and infrastructure layout that provides designs for the addition of data jacks/cables that are beyond the maximum 295 feet (90 meters), another TR will be required on that floor to accommodate those out of distance drops; or those cables/jacks will have to be omitted. Note: In rare cases...for a few pre-approved connections, Fiber can/will be installed instead of UTP.

Every PC or other single device with a network connection must be cabled back to the nearest telecommunications closet in the building. The MCR/BCR/TR room(s) shall house all and only the equipment directly related to the telecommunications systems and their environmental support systems.

The project contractor shall submit "As Built" drawings to UC Planning+Design+Construction with each job upon acceptance. DTS Telecommunications Infrastructure and various other UC departments
will use these drawings.

2.2 REQUIREMENTS

2.2.1 GENERAL

All telecommunications room doors are to be hard-wired card access. For specifics contact DTS public safety. All TR doors are to be keyed alike, using the University’s standard - key cores. Currently, the university-designated key code identifier for DTS TRs is “WXA50” (subject to change*). The brand of cylinders currently being used across all campuses for new Telecommunication Rooms is “KeyMark” by “Medeco”. Locks shall be spring locks (self-locking). *UC Public Safety will supply the key number and DTS will be responsible for authorizing employee and contractor badge access when needed, and for any keys that are assigned.

Due to the eventual location of communication racks and equipment in the BCR/TR’s doorways shall be designed with minimum measurements of 3’-0” by 6’-8” and shall open outward into the corridor to prevent damage to the racks and electronic equipment and allow for growth (e.g., additional racks and equipment).

Floors shall be sealed concrete or tile. Carpet is prohibited.

Telecommunication rooms shall be located above any threat of flooding. Rooms located in basements shall have floor drains with positive drainage, otherwise, sump pumps must be provided. When sump pumps are required, they shall be connected to a UPS system.

Fire fire-treated wood, 3/4 inch thick, must be mechanically fastened to the walls specified in the project specifications of each Main Cross-Connect, Building Communications Room, and Telecommunications Closet. The plywood shall be painted with two coats of Fire-resistant paint of a neutral color. The fire-treated plywood is to begin at four
Inches AFF and end at 8'-4" AFF.

The recommended ceiling height is a minimum of 8’-6”. Finished ceilings are prohibited in telecommunications rooms.

Install a minimum of four 4-inch sleeves between stacked telecommunications rooms, with sleeves extended 4 inches AFF and 4 inches below the ceiling of the room below. Buildings taller than 4 stories shall require an increase in the minimum number of sleeves as follows:

- 5-8 stories - 8 sleeves floors 1-4; 4 sleeves floors 5-8
- 9-12 stories - 12 sleeves floors 1-4; 8 sleeves floors 5-8;
- 4 sleeves floors 9-12 Etc.

Note: EZ Path 44s should be substituted for the 4” sleeves whenever possible. Please consult the STI (Specified Technologies Incorporated) catalog for floor grid kits, which can be installed pre-pouring of the foundation.

2.2.2 ENVIRONMENT

All telecommunications Node Rooms and Data Center quality spaces shall be environmentally controlled to maintain the room environment at a temperature range of 65 to 75 degrees Fahrenheit, with a relative humidity level of 35 to 75 percent non-conducting, 24 hours a day, 7 days a week. DTS must be consulted about the type of Air Conditioning unit. Telecommunications rooms shall be conditioned with a fresh air exchange of three air changes per hour. If the HVAC must be shut down, then an exhaust connected to emergency power must be provided to remove heat. Generally, the system must remove 7,000 BTU per hour. For TRs the building’s central air conditioning system is suitable.

No plumbing, HVAC, or electrical conduit shall pass through or be
directly above the telecommunications room. The space above the ceiling is needed for broadband amplifiers and/or assorted equipment.

2.2.3 ELECTRICAL

Lighting shall be 4-foot fluorescent/LED type and provide a minimum of 50 50-foot candles at 3 feet above the floor and be connected to the emergency generator when available. See the typical fixture layout in Section 14.

A minimum of two double duplex AC outlets must be provided to power telephone system components, computer interfaces, network electronics, and any other telecommunications requirements in each TR. Outlet locations should be obtained during the building design stage. If designated to be mounted on the wall, the outlet must be installed at a height of 7 feet AFF. Outlets must be flush when cut through plywood.

Each double duplex outlet shall be connected to a dedicated circuit breaker. Each dedicated electrical circuit shall be 20-amp, 110V, 60 HZ type unless designated otherwise. One of the two (2) circuits must also be tied to the building’s emergency generator when available. The other circuit shall be connected to the building’s main power. If a backup generator is unavailable, one of the two 20-amp circuits MUST be connected to a dedicated circuit breaker to a panel on a different floor.

It has been determined at this point that a 30-amp circuit is not a requirement to support the UPS systems to be installed in each TR going forward. It will be determined on a project-by-project basis whether to install 30-amp circuits (NEMA-L6-30) in selected TR(s). All breaker panels are to be labeled and identified to avoid being turned off in error. Breakers servicing the telecommunication rooms shall be equipped with locking devices to prevent turn-off.
2.2.4 GROUNDING

All telecommunications rooms shall have a grounding bar that shall be 3 feet long for TRs 10 feet long for BCRs and MCRs shall be 4 inches wide by 1/4 inch thick with predrilled NEMA bolt-hole sizing and spacing. This bar shall be attached to the main building grounding system with a wire not smaller than #6 AWG copper. The ground wire shall not share the cable tray with communications cabling. It may be installed in a separate conduit, which may be attached to the outside of the communications cabling cable tray.

Each distribution point shall be grounded to the main building ground, and NEC and EIA/TIA607 requirements shall be followed.

*See Section 14 for typical locations of the grounding bars.

2.2.5 LABELING

Communications, computer, and television conduit are to be classified, at every junction box, via a painted section or by use of conduit stickers indicating each conduit run:
Green = computer and telephone, Yellow = television, Orange = fiber optic.

All Distribution Frames and connecting blocks must be properly identified by destination.

All riser cables shall be properly marked. The marker is to be a flat piece of aluminum or wire-tied plastic labels. This marking shall be permanent and indicate:
• The Origination (Cable it is feeding from).
• The Destination (Telecommunications room it is feeding).

All voice and data cable pairs in riser cables or the entrance cable must be terminated on a connecting block and identified.
2.3 CABLE

2.3.1 GENERAL

A 50 percent growth factor shall be built in for riser cable and provided for unless otherwise specified; consequently, any cable work that pertains to telecommunications must be designed and/or approved by DTS. Project specifications will include this growth factor.

Each telephone and data cable shall have a minimum of 4 pairs; in some cases, a larger cable may be required. DTS will inform the contractor, via the project specifications, in such cases.

Plenum or PVC communications cable may be run exposed above ceilings, provided this cabling is supported independently of other utilities, such as conduits, pipes, and ceiling support systems, and not laid directly on the ceiling panels. PVC jacketed cable may be used in non-plenum areas if such use meets NFPA and NEC standards and codes.

All cables from the IC or Building Communications Room (BCR) must be 100 percent terminated in each Telecommunications room.

To facilitate future cable installations a new pull string, tied off at both ends, shall be installed simultaneously with the pull-in of the cable.

All station-run communication cables shall be copper, 24 AWG minimum, Superior-Essex category 5e for voice, and Superior Essex 10GainXP Category 6A cable for all data needs; horizontal station cabling, and Wireless Access Points. All station-run cables shall be plenum-rated.

All structured cabling and supportive backbone cabling for any University of Cincinnati construction or renovation project MUST be installed by one of the Structured Cabling Vendors awarded to UC’s Term Contract at that time.
The structured cabling vendor company must be a Legrand/Ortronics certified installer at the CIP level. The CIP certification allows the company to offer the NCompass limited lifetime warranty for both copper and fiber optics from Legrand/Ortronics and Superior Essex. The awarded Vendor’s certification must be for the Cincinnati region.

Note Important: Any renovation project or activities that include replacing 50% of the structured cabling in a TR/IDF will need to have all cabling switched to CAT 6A. DTS will **NOT** mix a Category 6 Structured cabling solution in any TR with a Category 6A installation.

2.3.2 TELECOMM SERVICE (VOICE) RISER CABLE

Telecomm Service (Voice) riser cable shall be category 3, 24 AWG. All riser cables shall be run through and held in place with Erico/Caddy’s Vertical Backbone Cable Support or DTS-approved in telecommunications rooms and on backboards for Legacy installs. Block placement and management backboards will be specified by DTS. The contractor shall install designation labeling strips with cable counts and jack ID. For new or renovation projects 25 pair risers will need to terminate on a patch panel.

2.3.3 FIBER OPTIC RISER

Fiber optic riser cable shall consist of a minimum of 24 strands of single-mode fiber. Termination in the BCR and TR shall be on standard Ortronics fiber patch panels utilizing LC-type connectors.

*See Section 13 for fiber cable and patch panel specifications.

The fiber riser shall be installed in a riser-rated innerduct (3/4” I.D. min) or must be armored fiber. The fiber cable(s) shall be secured to the backboard at the junction box.

2.4 RACKS AND PANELS
2.4.1 GENERAL

Each distribution point on the telecommunication room backboard shall be identified as a building entrance and/or a floor service panel.

Junction/pull boxes are to be provided on any conduit run longer than 100 feet.

All riser cable/high pair count (25-100 pair)/backbone voice terminations at the BCR (Building Communications Room) in the MCR will be terminated on 110 wall blocks as appropriate.

Note: All racks, cabinets, cable management, and panels shall be Legrand/Ortronics. Cabinet and rack types will be determined on a case-by-case basis depending on the project scope of work and the size of allocated telecom space.
*See section 13 for rack and cabinet descriptions and part numbers.

2.5 WIRE DRESS

2.5.1 VOICE STATION WIRES

Organize and label voice station cables in serial number order. Individually bundle and route the unshielded voice pair groups to each of the voice punch-down block columns, located on the wiring surface labeled "Voice." Any new voice cabling will be terminated on standard rack mount Cat 6A Ortronics patch panels instead of 110 blocks.

2.5.2 DATA STATION WIRES

Drop data station wires from the telecommunications room cable tray behind the data patch panel rack. Organize and label the cables in jack serial number order. Individually bundle and route unshielded twisted pairs to the network panel punch-down locations, located directly in the rack patch panel.

2.6 DATA RACK AND PATCH PANEL
The following installation method shall be used to install network distribution panels and associated equipment.

In Telecommunications Rooms containing over 144 data terminations; mount a minimum of two 7’ x 19” MM20 racks in the indicated positions; a third rack may be necessary if the number of data cables to be installed reaches the maximum capacity of 288 data terminations. Position the racks to maintain a minimum of 3 feet clearance from the front of the rack to the front-facing room wall and 3 feet clearance from the rear of the rack to the rear-facing room wall. If a row of racks is to be installed in a telecommunications room, maintain a minimum of 2’ clearance from the rightmost or leftmost rack to the opposing wall. Anchor racks to the finished floor using an isolation kit. Ground the rack to the telecommunications room grounding busbar with #6 AWG copper wire.

Mount data patch panels and fiber distribution panels in the rack next to the wall. At the top of the rack install a 4-U wire-management device except when the rack contains a fiber distribution box. Lay out the patch panels starting with a 24-port patch panel, then one 2-U wire-management device a 24-port patch panel, followed by a 2-U wire-management device. Continue by alternating between 2-U wire-management devices, and 24 port patch panels until the rack is full. A data rack is considered to be at its maximum (full) capacity at 288 data cables. A full data rack will have 13- 2U wire management devices and 12 - 24 port patch panels. When data jacks for multiple floors are serviced out of the same TR, BCR, or MCR, the TR must be large enough to accommodate a minimum of three 7’ x 19” racks, with the third rack positioned in the same row. The patch panels shall be laid out and labeled as follows:

Mounting of patch panels shall begin in the rack next to the wall. The rack in the middle shall be reserved for active electronics. All racks with active electronics will get a 4U wire management device or fiber distribution box at the top; followed by a 24-port patch panel followed by a 2-U wire manager. Continue by alternating between 2U wire management devices and 24 port patch panels until the rack is full. An
Active data equipment rack is considered to be at its maximum (full) capacity at 12 - 48 port data switches. A full active equipment rack will have 1 - 4U wire management device or fiber distribution box, 1 – 24 port patch panel, 12 – 48 port data switches, and 14 - 2U wire management devices.

If it is decided that multiple floors will be terminated in the same TR, DTS Telecommunications Infrastructure needs to be consulted.

If it is decided that multiple floors will be terminated in the same TR and on the same rack, the topmost floor(s) will be located on the patch panel(s) at the top of the rack(s). If the TR will be serving multiple floors, and quantities for any floor that exceeds 144 data cables, additional racks may be required. Data jacks from each floor will be grouped when the 19” racks are initially installed and all the cables going to that TR are terminated. They must be pre-labeled with the appropriate patch panel ID numbers. DTS must be consulted for the rack, cabling, and equipment layout approvals. Additional racks may be required to satisfy this layout.

NOTE: Contractors will be responsible for installing UPSs (provided by DTS) in each TR (if not existing) on all construction/renovation projects. One UPS will be installed for every 2 network switches...with electrical circuits installed per 2.2.3 above.

*See Section 13 for a complete list of UC standard equipment & wiring devices. Consult DTS for final approval of alternate devices.

A minimum of 2 dedicated 20-amp double duplex electrical outlets are required in each TR preferably at the bottom of each rack to support the UPS systems for the Data switches and any other active network equipment. A dedicated 20-amp circuit is required for every 2 UPSs installed.

1. **One circuit must** be connected to the building generator if available.

2. The **2nd circuit** should be connected to the building’s main power only.
3. If building generator power is unavailable, one of the two 20-amp circuits MUST be connected to a dedicated circuit breaker to a panel on a different floor.

30-amp circuits (NEMA-L6-30) may be required to support other IT systems. **This will be decided on a project-by-project basis.** DTS must be consulted for the rack, cabling, power, and equipment layout approvals on all projects.

Because of the lack of available space on the patch panel for labeling, Patch panel labels cannot accurately match the jack labels as described in Section 3.1.2. For this reason, the TR number required on the jack label is not required on the patch panel ID, but each patch panel ID must contain the floor code letter. The rack furthest from the wall is reserved for future growth.

Note typical rack drawings are in Section 14. DTS Telecommunications Infrastructure must be consulted before rack installation begins.

2.6.1 PUNCH DOWN

Fasten the B-line modules as appropriate to the plywood-wiring surface with #10 x ¾ inch screws. Attach Legrand/Ortronics legless 110 punch-down blocks. Route all cables to be punched down to these blocks through the B-line mounting module so they can be dressed from under the 110 blocks. Lay down all station wire pairs in jack serial number order from the lowest serial number at the top leftmost position to the highest serial number at the bottom right position.

- **VOICE (Riser/Feeder/High Pair Count Copper)**

 Fasten the B-line modules as appropriate to the plywood-wiring surface with #10 x ¾ inch screws. Attach Legrand/Ortronics legless 110 punch-down blocks. Route all cables to be punched down to these blocks through the B-line
mounting module so they can be dressed from under the 110 blocks. Lay down all station wire pairs in jack serial number order from the lowest serial number at the top leftmost position to the highest serial number at the bottom right position.

- **DATA 4-Pair.** *(Legacy/Existing, including 4 pair voice cable)* Use Legrand/Ortronics part number OR-PHD66U24 – 24 port, category 6 punch down style loaded patch panels *(or match existing).* Mounting and installation of patch panels should begin in the leftmost rack unless otherwise directed by DTS. Punch down the four unshielded pairs on the patch panel as directed by the manufacturer. NOTE that the patch panels for terminating the data jacks may be located on the floor above or below the floor on which the jack is located. In this case, the station wiring must be run through the riser to the patch panel terminating on the floor. No intermediate cross-connects are permitted between the data jack and the Legrand/Ortronics patch panels. The minimum bend radius must meet the cable manufacturers’ specifications for Category 6 wiring.

DATA 4-Pair. *(New Installations)* Use Legrand/Ortronics part number OR-PHD6AU24 – 24 port, category 6A punch-down style loaded patch panels. Mounting and installation of patch panels should begin in the leftmost rack unless otherwise directed by DTS. Punch down the four unshielded pairs on the patch panel as directed by the manufacturer. NOTE that the patch panels for terminating the data jacks may be located on the floor above or below the floor on which the jack is located. In this case, the station wiring must be run through the riser to the patch panel terminating on the floor. No intermediate cross-connects are permitted between the data jack and the Legrand/Ortronics patch panels. The minimum bend radius must meet the cable manufacturers’ specifications for Category 6A wiring.
*See Section 13 for a complete list of DTS standard wire, wiring components, racks, part numbers, etc. This is the equipment required for all installations. Exceptions or substitutions must be approved by DTS.

All structured cabling and supportive backbone cabling for any University of Cincinnati Construction or renovation project MUST be installed by one of the Structured Cabling Vendors awarded to UC’s Term Contract at that time.

The Structured cabling vendors’ company must be a Legrand/Ortronics certified installer at the CIP level. The CIP certification allows the company to offer the nCompass limited lifetime warranty for both copper and fiber optics from Legrand/Ortronics and Superior Essex. The awarded Vendor’s certification must be for the Cincinnati region.

3. DATA OUTLETS--INSIDE PLANT WIRING AND RACEWAYS
3.1 GENERAL

3.1.1 OVERVIEW

All telephone and data station wiring shall be a continuous wire from the TR, BCR, or MCR for voice and from the patch panel for data to the communication outlet. All station cables will be free of kinks, chafes, and tight bends. Any ceiling tiles removed by the contractor for cable installation will be re-installed in good condition. Replacement of damaged tiles is the contractor’s responsibility.

The building occupant’s present and future requirements will determine the need for multiple jack outlets. Final approval for the layout of jack outlets shall rest with DTS. During the programming stage, DTS will consult with the building occupant(s) and supply the desired jack layout to the project architect for inclusion in the project specifications.

*See Section 13 for a complete list of UC standard wiring devices. Consult Jason Mayer Solutions Design and Supply Manager at mayerjm@ucmail.uc.edu with DTS Telecommunications Infrastructure for final approval of alternate devices.

All non-VoIP voice outlets contact DTS Telecommunications Infrastructure

NOTE: For any non-data network-related Telecomm service requested contact DTS Telecommunications Infrastructure

All data outlets shall terminate in Legrand/Ortronics RJ-45 eight-conductor modular jack assemblies. The data outlet(s) shall be the lower outlet(s) in the wall plate. Wire color coding shall be per EIA/TIA-568B specifications. All pairs shall be terminated on both voice and data jacks.

The total wire path length from the data outlet to the telecommunications closet block must not exceed 295 feet (90 meters).
This is important to meet the Ethernet requirements of IEEE 802.3. Please note that in some cases the Telecommunications Closet that houses network electronics will service both the voice and data jacks on the floor above and below, as well as the floor it is on. This must be considered when determining adherence to the maximum length for the data outlet wiring.

3.1.2 LABELING

Each end of all cables will be labeled at their termination locations.

All jack modules shall be color-coded to UC standards indicating that the CAT6A data cabling solution is (orange). All jacks shall be marked with identification numbers as detailed below.

Note Important: Any renovation project or activities that do not include replacing the structured cabling in the entire facility/building will still receive a Category 6 data cabling solution instead of 6A. Data jacks for a Category 6 solution are **Green**.

DTS will provide the identification number range to be used for the building(s). If the project timeline permits; Before any wiring begins, the installing contractor shall provide DTS a list of jack identification numbers used, their corresponding room numbers, patch panel termination points, and drawings that detail the location within the room. Jack identification numbers at the jack locations shall also be placed on the as-built drawings provided by the contractor. An updated spreadsheet detailing the above-mentioned information shall be provided by the contractor as additions or changes occur and a final copy after project completion.

3.1.3 COMMUNICATION OUTLET IDENTIFIER

Each Communication Outlet will be labeled with 11-character identification. For example, five characters, a dash “-”, a letter, and one four-digit number. Every single-gang voice/data faceplate will have two 11-character labels, one for the top outlet and one for the bottom outlet. Every double-gang voice/data faceplate will have four 11-character labels, two for the top outlets and two for
the bottom outlets.

The first five characters of the number represent the room number of the TR that feeds the Communication Outlet location. The letter is a code for the floor on which the outlet is located, with “A” representing the lowest floor in the building, “B” representing the next floor up, and so forth. The lowest usable floor in the building will always be represented with “A” regardless if that floor has any voice or data jacks located on the floor. The next four digits represent the termination location of the cable on the 110 blocks for UTP Voice Outlets, Legrand/Ortronics category 6A patch panels for UTP Data Outlets and Fiber Patch Panels for Fiber Outlets. Each IDF will have a block of numbers assigned to it, in the range of 0001 to 3999. These are sequential numbers starting at 0001. If the building has more than one TR, each TR will have the same block of numbers assigned to it. For example, 0001 through 3999 for TR number 1, 0001 through 3999 for TR number 2, and so on, as required. The block of numbers will be assigned as follows: 0001 to 2999 is reserved for UTP Voice Outlets and UTP Data Outlets, and 3000 to 3999 is reserved for Fiber Outlets.

DTS will assign these blocks to each TR during the Infrastructure Design Phase. UTP Voice Outlets are to be labeled sequentially with odd numbers from the block of assigned numbers for the associated TR, beginning with 0001, 0003, 0005, and so on, as required. UTP Data Outlets are labeled sequentially with even numbers from the block of assigned numbers for the associated TR, beginning with 0002, 0004, 0006, and so on, as required. Fiber Outlets are labeled sequentially from the block of numbers assigned for the associated TR, beginning with 3000, 3001, 3002, and so on, as required.

Note this Section is for Existing/Legacy (Examples 1-7 below)
• **EXAMPLE 1** UTP Analog/Voice Outlet 00G24-A0023

By looking at this Jack Identifier you can determine the following:

00G24-A0001 (Characters 1, 2, 3, 4, 5). Identifies room number “G24” as the TR feeding this UTP Voice Outlet located on floor A (character 7), the lowest floor in the building.

00G24-A0001 (Characters 8, 9, 10, 11). Identifies this Outlet as a UTP Voice Outlet since it is an odd number. The position on the 110 blocks is counted sequentially with odd numbers from left to right and top to bottom.

• **EXAMPLE 2** UTP VoIP/Data Outlet 00124-B2048

By looking at this Jack Identifier you can determine the following:

00124-B0002 (Characters 1, 2, 3, 4, 5). Identifies room number “124” as the TR feeding this UTP Data Outlet on floor B.

00124-B0002 (Characters 8, 9, 10, 11). Identifies this Outlet as a UTP Data Outlet since it is an even number. The position on the Legrand/Ortronics patch panel is counted sequentially with even numbers from left to right and top to bottom.

• **EXAMPLE 3** Desktop Fiber Outlet 00324-E3036

By looking at this Jack Identifier you can determine the following:

00324-E3036 (Characters 1, 2, 3, 4, 5). Identifies room number 324 as the TR feeding this Fiber Outlet.

00324-E3036 (Characters 8, 9, 10, 11). Identifies this Outlet as a
Fiber Outlet since it is in the range of 3000 to 3999. The position on the Fiber Patch Panel is counted sequentially from left to right and top to bottom. The outlet is located on floor E.

Door Access cables and outlets are installed, terminated, and utilized in the same manner as standard data outlets, and should be labeled as such.

EXAMPLE 4

Door Access Outlet 00124-B2050

By looking at this Jack Identifier you can determine the following:

00124-B2050 (Characters 1, 2, 3, 4, 5). Identifies room number “124” as the TR feeding this UTP data outlet on floor B.

00124-B2050 (Characters 8, 9, 10, 11). Identifies this Outlet as a UTP Data Outlet since it is an even number. The position on the Legrand/Ortronics patch panel is counted sequentially with even numbers from left to right and top to bottom.

Fire Alarm cables and outlets are currently installed, terminated, and utilized like standard voice outlets, and should be labeled as such.

EXAMPLE 5

Fire Alarm Outlet 00G24-A0025

By looking at this Jack Identifier you can determine the following:

00G24-A0025 (Characters 1, 2, 3, 4, 5). Identifies room number “G24” as the TR feeding this UTP voice outlet on floor A (character 7), the lowest floor in the building.

00G24-A0025 (Characters 8, 9, 10, 11). Identifies this Outlet as a UTP Voice Outlet since it is an odd number. The position on the 110 block is counted sequentially with odd numbers from left to right and top to bottom.
ATM cables and outlets are installed, terminated, and utilized in the same manner as a standard voice outlet and should be labeled as such.

- **EXAMPLE 6** ATM Outlet 00G24-A0015

 By looking at this Jack Identifier you can determine the following:

 00G24-A0015 (Characters 1, 2, 3, 4, 5). Identifies room number “G24” as the TR feeding this UTP voice outlet on floor A (character 7), the lowest floor in the building.

 00G24-A0015 (Characters 8, 9, 10, 11). Identifies this Outlet as a UTP Voice Outlet since it is an odd number. The position on the 110 block is counted sequentially with odd numbers from left to right and top to bottom.

With the recent upgrade to the Bearcat Card system; Communications jacks and outlets for Bearcat Card services are now installed, terminated, and utilized in the same manner as standard data outlets, and should be labeled as such.

- **EXAMPLE 7** Help Phone or Area of Rescue Outlet 00G24-A0075

 By looking at this Jack Identifier you can determine the following:

 00G24-A0075 (Characters 1, 2, 3, 4, 5). Identifies room number “G24” as the TR feeding this UTP voice outlet on floor A (character 7), the lowest floor in the building.

 00G24-A0075 (Characters 8, 9, 10, 11). Identifies this Outlet as a UTP Voice Outlet since it is an odd number. The position on the 110 block is counted sequentially with odd numbers from left to right and top to bottom.
• NEW/RENOVATION UTP VolP/Data Outlet 00124-B2048

By looking at this Jack Identifier you can determine the following:

00124-B0002 (Characters 1, 2, 3, 4, 5). Identifies room number “124” as the TR feeding this UTP Data Outlet on floor B.

00124-B0002 (Characters 8, 9, 10, 11). Identifies this Outlet as a UTP Data Outlet since it is an even number. The position on the Legrand/Ortronics patch panel is counted sequentially with even numbers from left to right and top to bottom.

3.1.3 WIRING

The cabling and wiring products listed in Section 13 are required for use at UC because of their reliability, durability, performance, and warranty among certified brands. Alternates or equivalents are not acceptable.

Note Important: Any renovation project or activities that include replacing 50% of the structured cabling in a TR/IDF will need to have all cabling switched to CAT 6A. DTS will **NOT** mix a Category 6 Structured cabling solution in any TR with a Category 6A installation.

Note: Category 3 wiring is only to be used for high pair count voice riser cable.

3.2 OUTLET LOCATION
3.2.1 LOCATIONS AND QUANTITIES

Unless otherwise specified, the following minimum number of outlets shall be installed in the following quantities, depending on the function of that office/room.

Spaces not explicitly covered below shall have jack quantities and locations determined on a case-by-case basis during the design stage of the project.

Note: A typical outlet consists of 1 data jack not to exceed 4 total jacks. In cases involving VoIP, a single data jack will cover both VoIP phone and data service requirements.

- Faculty/Administrative Offices: Each office shall have one communication outlet per designated occupant. The outlets shall not be collocated but are placed on opposite or adjacent walls.

- Clerical/Staff Offices: One communication outlet per designated occupant, at the location of each desk, and one additional outlet for every two occupants or fraction thereof.

- Secretary/Administrative Assistants Offices: One communication outlet per designated occupant, and two additional outlets per office area.

- Conference Rooms: A minimum of two communication outlets and if requested one CATV outlet per room for rooms up to 200 square feet. A minimum of four communication outlets and if requested one CATV outlet per room for rooms over 200 square feet. One outlet shall be located on each wall. Rooms with more than 500 square feet shall have additional outlets equally spaced on each wall.

- Laboratories/Graduate Student Offices: One wired communications outlet for every occupant. Additional outlet requirements will be determined based on size and in the design phase of the project.
• Classrooms/Lecture Halls/Auditoriums: One to multiple communication outlets depending on room and/or occupancy size; one data jack - Wall phone mounting at Instructors workstation/Lectern.

<table>
<thead>
<tr>
<th>Number of Outlets</th>
<th>Student Occupancy</th>
<th>CATV Outlets</th>
<th>Ceiling Data Outlets for Wireless</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 – 15</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>15 – 50</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4 or more</td>
<td>50 – Over</td>
<td>4</td>
<td>3 or more **</td>
</tr>
</tbody>
</table>

NOTE: * One TV outlet in the front of the room and another in the ceiling for projection TV. If the classroom is designated as an Electronic Classroom, then the Electronic Classroom requirements in Section 4 may supersede the CATV outlet requirements listed above.

** Large Lecture Halls/Auditoriums may require up to 9 wireless data outlets.

The recommended location priority for the outlets would be:

1. Chalkboard and ceiling
2. Inside walls with proper spacing
3. Projection booth/rear wall
4. Remaining sides

- Residence Hall Rooms: One data outlet per occupant or potential occupant of each room. The locations will be determined during the design stages of the project.
- Residence Hall Lounges: One or more data outlets and one CATV outlet per lounge. The quantity and locations will be determined during the design stages of the project.
- Storage Areas: One data outlet per room. Two outlets for rooms over 500 square feet and one additional outlet for each additional 2000 square feet.

- Mechanical Rooms: Consult the Division of the University Architect. Some rooms require communications outlets for telephones or energy management devices.

- Building Communication Rooms and Telecommunications closets: One data outlet per room.

- Other spaces, including locations for data jacks for Wireless LAN access points, not covered above will be determined on a case-by-case basis during the design stage of the project.

3.3 OUTLET INSTALLATION

3.3.1 MOUNTING

Use a dual gang outlet box similar to Steel City, part number 72171-3/4, or UC-approved equivalent. When mounting the outlet box in a steel studded wall, use a back brace.

Use Steel City plaster rings, part number 72-C13, (single gang) or 72-C-17 (double gang) or their DTS-approved equivalent. The inside opening area must match the outlet installation enclosure. The plaster rings must be level and positioned flush with the finished surface.

*Note: when installing a double gang outlet box PLEASE put a single gang outlet reducer plaster ring on the box unless otherwise noted by DTS Telecommunications Infrastructure. Please contact DTS
Telecommunications Infrastructure with any questions.

Outlets are to be mounted at standard industry heights and positions unless otherwise specified by DTS. Standard mounting height of communication outlets:

<table>
<thead>
<tr>
<th>Desk</th>
<th>18 inches, AFF. (Single gang plaster ring)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wall</td>
<td>60 inches, AFF. (Single gang plaster ring only)</td>
</tr>
<tr>
<td>Handicapped wall mount</td>
<td>48 inches, AFF. (Single gang plaster ring only)</td>
</tr>
<tr>
<td>Electronic Classroom</td>
<td>See Section 4</td>
</tr>
</tbody>
</table>

CATV cable is normally installed at the height of the TV mounting. Use only a single gang box.

NOTE: Electrical outlets shall be provided for TV and projection devices. See Wiremold/Legrand Evolution wall boxes for recessed options.

3.4 WIRING PATHWAYS

3.4.1 GENERAL

To avoid electromagnetic interference (EMI), all pathways should provide clearance of at least:

- 4 feet (1.2 m) from motors or transformers
- 1 foot (0.3 m) from conduit and cables used for electrical power distribution
- 5 inches (12 cm) from fluorescent lighting or power lines over 2kVA, and up to 24 inches from any power line over 5kVA. In general, communications cabling is routed separately or several
feet away from power cabling. Similarly, communications cabling is routed away from large motors, generators, induction heaters, arc welders, x-ray equipment, and radio frequency, microwave, or radar sources. Whenever possible, pathways should cross perpendicular to fluorescent lighting and electrical power cables or conduits.

3.5 CONDUIT

3.5.1 GENERAL

All conduit work shall meet the requirements of the National Electrical Code. All voice, data, and video wiring inside rooms shall be protected by metallic conduit or other means such as Legrand/Wiremold or troughs on the floor. Aluminum is not acceptable in caustic environments. EMT conduit shall be used for all interior wiring. All conduits are to be concealed.

No more than an equivalent of two 90-degree bends is allowed in a run between junction boxes or pull boxes.

Entrance to junction boxes or distribution panels shall be adjacent to the corners.

The use of plenum cable instead of conduit shall be determined on a case-by-case basis. DTS must be contacted for approval. In major renovation and new construction projects where the MCR/BCR and Telecommunications Rooms are not in alignment, the contract shall include provisions for the installation of three riser conduits (4 inches minimum diameter) from the MCR/BCR to each TR. A pull string and appropriate junction pull box shall also be provided in each conduit run to facilitate future installation of cable(s). MaxCell fabric innerduct should be used to create multiple pathways in a 4” conduit where fiber will be installed.

All conduits in the slab shall be a minimum of 1 inch...No exceptions.
All sleeves must protrude 4 inches AFF and below and be capped at both ends. Coordinate with DTS for the number of conduits entering the facility. All sleeves must be bonded to the telecommunications bonding system.

No horizontal conduit run shall be more than 100 feet between pull boxes.

Conduit for telephone or computer outlets shall be terminated in a dual gang box. SteelCity, part numbers 52151-1, 72151-1, 52-C-17 or 72-C-17 for 1 inch with dual gang plaster ring and 52151-3/4, 72151-3/4, 52-C-13, or 72-C-13, for 3/4 inch with single gang plaster ring. UC-approved equivalents to the Steel City part numbers may be used.

All communications outlets shall be a 1-inch conduit, with a minimum of bends, from the outlet to the cable tray, wire way, or homerun directly to the telecommunications closet. Homerun conduit is required when the cable path above the ceiling is not easily accessible. Examples of ceilings where conduit is required include drywall and interlocking ceiling tiles. Pull boxes must be installed every 180 degrees or 100 feet of the conduit run. All conduit stubs must be bonded to the telecommunications grounding system. See Section 4 for conduit requirements for Electronic Classroom outlets.

3.5.2 CONDUIT/RACEWAY CAPACITY

Conduits shall be sized using industry-standard guidelines for telecommunications distribution methods. Guidelines can be found in the Building Industry Consulting Service International (BICSI) Telecommunications Distribution Methods Manual and/or cabling manufacturers’ guidelines.

Any surface mount raceway (metallic or non-metallic) should be from Legrand/Wiremold and be able to utilize the appropriate communication and A/V modules from Legrand/Ortronics.
3.5.3 FLOOR MOUNTED ASSEMBLIES

All Floor Mounted Assemblies including floor boxes, poke-through, floor outlets, floor-mounted whips, tombstones, etc. shall be sized using industry-standard guidelines for telecommunications distribution methods; specifically relating to cable fill ratios and limitations. Guidelines can be found in the Building Industry Consulting Service International (BICSI) Telecommunications Distribution Methods Manual and/or through individual cabling manufacturers’ installation guidelines.

All Poke-throughs and floor boxes should be of the Evolution series from Legrand/Wiremold.

All Evolution Floor boxes are designed to work in concrete, raised floor, and wood floor applications and are fully adjustable for both pre- and post-concrete pour. The enclosure will have removable dividers and a tunnel feature that allows all compartments to be connected. The modules are removable through the top or back of the floor box. The floor box hinge must be able to open to a full 180° and lie flat on the floor surface providing easy access to interior modules. Cable egress doors lock in position when open and will automatically close around wires to protect cabling and avoid tripping hazards. Floor boxes will accept single, double, or triple wall plates as well as accommodate power, communications, and A/V devices. Floor boxes are designed to maintain up to a 2-hour fire rating.

The Evolution poke-throughs provide the interface between power, communication, and audio/visual (A/V) cabling in an above-grade concrete floor and the workstation or activation location where power communication and/or A/V device outlets are required. These poke-thru devices provide recessed device outlets that will not obstruct the floor area. The poke-thru device shall be compatible with the complete line of Legrand / Ortronics workstation connectivity outlets and modular inserts.
Poke Through units shall permit all wiring to be completed at floor level. The 6AT and 6ATCFF units shall be mounted in a 6" [152mm] cored hole, an actual 6 1/16" [154mm] core hole. The 8AT units shall be mounted in an 8" [203mm] cored hole, an actual 8 1/16" [205mm] core hole. Use is defined by the UL Fire Resistance Directory as a minimum spacing of “2 ft. [610mm] on center and not more than one device per each 65 sq. ft. [6m²] of floor area in each span.”

3.6 CABLE TRAYS

3.6.1 GENERAL

All cable trays shall be Legrand/Cablofil and designed to accommodate all types of cabling. Consequently, any cable work that pertains to telecommunications must be designed and/or approved by DTS. Note: All cable tray systems shall be designed specifically for communications cabling installations in plenum-rated environments. All telecommunications pathways (Caddy J-hooks, Legrand/Cablofil cable tray, or Legrand/Wiremold raceways) shall be used for DTS medium (voice, data, and fiber optic cabling) only.

The minimum dimensions for a cable tray shall be 12 inches wide and 4 inches deep. In certain instances, only when indicated in the design specifications and approved by DTS, a smaller tray may be used. The tray must consist of a continuous, rigid, welded steel or stainless steel wire mesh cable management system. The cable tray systems are defined to include but are not limited to, straight sections, supports, and accessories. Wire mesh cable tray will have continuous Safe-T-Edge T-welded top side wire to protect cable insulation and installers. The basket tray shall be spliced using EDRNs on the sides as well as an SWK washer/nut at the bottom of the tray.

Contract documents shall show a cross-section of the communication wire way or cable tray. The drawing must show a reference to other utilities in the building. All sections of the cable tray must be bonded together with approved bonding methods and devices. For installation of other types of “approved” low voltage cables in the cable tray, DTS recommends a separate tray or at minimum a divider in the basket tray.
to prevent interference from unshielded cables.

Supports for cable trays larger than 12 inches in width are to be installed according to the Legrand/Cablofil specifications. Supports for cable trays 12 inches or less may be farther apart but must meet Cablofil/Legrand installation requirements. Single supports are not acceptable. All supports are to be fastened to the building structure above. If the cable tray will be of a wall mount type, it must be installed properly to provide proper permanent support at the tray’s maximum capacity.

Legrand/Cablofil Radius Dropouts shall be used whenever multiple cables are exiting the tray.

STI’s EZ Path (44, 33, or 22 series) shall be used in conjunction with the tray whenever cabling is going through a fire-rated wall. STI’s Smoke & Acoustical Pathway shall be used in conjunction with the tray whenever cabling is going through a non-fire-rated wall.

DTS will not install any cable or perform any work until all installations are made to comply with specifications.

3.6.2 MOUNTING

Cable trays must maintain a minimum of 6-inch clearance from obstructions above the tray and a minimum of 8 feet AFF. Trays are to provide access via the most direct path to all communications outlets on the floor. Install sweeping factory 90’s for all turns. Use end-of-tray terminations where wire drops down to walls to prevent abrasions and cuts from metal tray edges. Use a trapeze-supported cable tray mounting method suspended by the manufacturer’s recommended size all-thread. Fasten all-thread to ceiling anchors, allowing no bends in all-thread. Support the cable tray in this manner at every section-to-section junction and 5 feet to 6 feet intervals (mid-span) between joints. Whenever possible, the tray should be no closer than 6 inches from the structural ceiling, ducts, or pipes, considering all other possible obstructions. A minimum
of 5 inches distance from lighting, especially fluorescent lighting, is desired.

3.7 OPEN TOP CABLE SUPPORTS AND RINGS

3.7.1 GENERAL

All open-top cable supports (Caddy J-hooks) must be suspended from or attached to the structural ceiling or walls with hardware or other installation aids from Caddy specifically designed to support their weight. When used, Caddy J hooks shall be located on 48 to 60-inch centers to adequately support and distribute the cable’s weight. These types of supports may typically hold up to fifty 0.25-inch diameter cables. No other cables shall be run in the same j-hooks along with the voice and data cables. A separate painted (white, red, blue, green) Caddy j-hook system must be provided to facilitate the installation of another low-voltage cabling.

For larger quantities of cables that convene at the Telecommunications Closet, provide Legrand/Cablofil cable trays or other special supports that are specifically designed to support the required cable weight and volume.

3.8 DRAWINGS

Refer any questions specifically not addressed in this document to DTS Telecommunications Infrastructure or Planning+Design+Construction.
4.1.2 GENERAL

For detailed specifications regarding CATV television cabling, see Section 13.

Project specifications will indicate who is to be responsible for furnishing, installing, and terminating the various types of communications cabling, outlets, panels, and other components specified in this section. Unless otherwise noted, the project electrical contractor will be responsible. **All cabling must be installed unless specifically excluded in the project specifications.** Under no circumstance, will DTS allow CATV cabling installations in cable trays, J-hook systems, or horizontal sleeves installed for UC voice and or data cabling. All CATV cabling must be installed and supported by a separate, contractor-supplied system (Caddy J-hooks). All horizontal penetrations needed to facilitate these installations, shall be the responsibility of the contractor.

4.1.3 LABELING

Television cables are to be identified via a painted section or by use of conduit stickers indicating each conduit run. Yellow = television.

4.1.4 CABLE

Television outlet cable shall be RG-6/U type shielded coaxial 75 ohms, Belden, part number 9116 or equivalent for non-plenum applications, and Belden part number 9116P or equivalent for plenum applications.

Television riser cables in multi-story buildings or buildings with first floor BCR/MCR shall be 75 ohms RG-6/U type quad shielded coaxial 75 ohms, Belden, part number 1189A or DTS approved equivalent. Obtain all cable sizes from DTS.

CATV outside plant cable for all tunnel and underground conduit locations shall be Commscope P3 500 JCSS or equivalent.

4.1.5 OUTLETS
Each CATV/video outlet may provide video capabilities and is generally
terminated in a type F male connector on a standard wall plate.
Customer requirements will be conveyed to DTS.

Each CATV outlet shall be home run to the nearest EIDF or
Telecommunications Room.

4.2 VIDEO/PROJECTION DEVICES, CABLING, AND OUTLETS

4.2.1 GENERAL

DTS Telecommunications Infrastructure Design or Media Services
shall provide the specifications and cable parts for projection devices
and/or monitors.

Projection devices are either ceiling or table-type mounts. In each case,
the conduit must be connected to the front of the classroom.

4.3 ELECTRONIC CLASSROOMS

4.3.1 GENERAL

DTS Telecommunications Infrastructure Design or Media Services shall
provide the specifications for the conduits and outlet(s) required for a
room designated as an Electronic Classroom. An Electronic Classroom
outlet will provide for the connection of VoIP, data, video, audio, and
control devices.

4.3.2 LABELING

Each end of all cables (UTP, coax, fiber, audio, etc.) and all pairs will be
labeled with their outlet identifier at their termination locations.

4.3.3 CONDUIT / OUTLET BOXES

In general, the necessary conduit shall be provided as follows:
4.3.3.1 Primary Electronic Classroom - three 2-inch conduits...from (8” X 8” X 6”) outlet box (in-floor under Lectern or Podium) up to cable tray or J-hook system in the ceiling to provide UTP data cables for servicing video projector – wall-mounted, monitors, stereo speakers, and alarm.

4.3.3.2 Primary Electronic Classroom One 2-inch sleeve from the cable tray or J-hook system in the classroom ceiling to penetrate a wall leading to the cable tray or J-hook system in the hallway.

4.3.3.3 Primary Electronic Classroom analog wall telephone outlet box - one 3/4-inch conduit to cable tray or J-hook system in the ceiling to provide Cat 5e cable to local Telecommunication Room.

The location and necessity of each will be determined during the final design, based on the intended function of the room. The room will always have one primary Electronic Classroom outlet.

Wall Boxes: Wiremold/Legrand Evolution Series Wall Boxes will be utilized for use in new construction and renovation construction projects. Boxes shall be compatible with a complete line of Legrand/Wiremold AVIP devices, Legrand/Ortronics workstation connectivity outlets and modular inserts, and most audio/video manufacturers’ products.

1. Wall boxes provide the interface between power, communication, and audio/video(A/V) cabling new construction and renovation locations where power and communication and/or A/V device outlets are required. Boxes shall provide recessed device outlets that will not obstruct the wall area.
2. Wall boxes shall permit all wiring to be completed at the box level.

*See Section 14 for Electronic Classroom box location templates.

4.3.4 CABLE

The data UTP cables shall be four pair Superior-Essex category 6A cable.
Other UTP cables (Cat 6) shall only be used to MATCH existing legacy installs

Note Important: Any construction or renovation project activities that do not include replacing the structured cabling in the entire facility/building, or at least the entire floor will still match the existing Category of data cabling solution instead of 6A. DTS will NOT mix a Category 6 Structured cabling solution in any TR with a Category 6A installation. This does not include any cabling that will be installed within the Electronic Classrooms. There will be Category 6A cables installed among these cables in all new and renovated classrooms (Refer to the table in section 4.3.6).

A detailed description of these cables with the manufacturer and part number can be found in Section 13.

4.3.5 INSTRUCTOR WORKSTATION/LECTERN-SWITCHES

LECTERN SWITCHES WILL BE INSTALLED WHEN A CLASSROOM DESIGN REQUIRES MORE THAN (4)

DATA CABLES/JACKS. (Consult DTS ECSS for determination).

ANY CLASSROOM DESIGN REQUIRING (4) DATA CABLES/JACKS OR LESS...WILL ACQUIRE DATA CONNECTIVITY FROM THE LOCAL TELECOMMUNICATIONS ROOM SERVING THAT CLASSROOM AND NO SWITCH WILL BE INSTALLED IN THE INSTRUCTOR WORKSTATION/LECTERN. (Consult DTS ECSS for determination).

A DTS-managed 24-port minimum data switch can be installed with ECSS’s approval before installation (Cisco Catalyst-1000). The model used would depend upon the number of connections needed for the classroom. The switch is to be located within the instructor workstation/Lectern or cabinet/rack location.
4 - 4 pair Superior-Essex category 6A cables will be installed in the instructor workstation (which will technically serve as a Telecommunications Room/Space) for the data-switch uplink Connections. The four data cables will run back to and terminate in the local (TR) Telecommunications Room or BCR that serves that classroom.

1 - 6 strand Single mode fiber optic cable will be installed in the instructor workstation for data-switch uplink connectivity if needed.

Complete cable needs, in this case, are as follows:

1 – **Analog voice/jack - 4 pair category 5e (Legacy Only)**

4 – Data/Jacks – 4 pair Superior Essex Category 6A

1 – 6 strand SM fiber w/LC connectors

Various cables from the instructor workstation to equipment and devices within the room. **See ECSS representative for details.**

SEE THE TABLE BELOW FOR STANDARD ELECTRONIC CLASSROOM CABLING NEEDS.

4.3.6 OUTLETS

The Primary Electronic Classroom outlet box will contain:

<table>
<thead>
<tr>
<th>#</th>
<th>TYPE</th>
<th>Qty.</th>
<th>Example</th>
<th>Purpose</th>
<th>Termination</th>
<th>Location</th>
<th>Comments</th>
</tr>
</thead>
</table>

49
<table>
<thead>
<tr>
<th></th>
<th>UTP CAT6A</th>
<th>2 ea. per projector</th>
<th>Superior Essex 10Gain XP CAT6A – Plenum</th>
<th>A VoIP connectivity /IP controls</th>
<th>ANSI/TIA/EIA 568-B</th>
<th>Instructor workstation:</th>
<th>Projector location:</th>
<th>Camera location:</th>
<th>DTS Comm Standard – Cat 6A To be terminated at Instructor workstation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Surface mount inside the workstation.</td>
<td>Recessed/surface mount box near projector(s) TBD</td>
<td>Recessed/surface mount box near the camera – Loc TBD</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>UTP CAT6A</td>
<td>2 ea. per camera</td>
<td>Superior Essex 10Gain XP CAT6A – Plenum</td>
<td>A VoIP connectivity /IP control</td>
<td>ANSI/TIA/EIA 568-B</td>
<td>Instructor workstation:</td>
<td>Surface mount inside the workstation.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>18AWG 2CDR</td>
<td>1 ea. per workstation</td>
<td>West Penn 25224B 18/2 Plenum speaker cable</td>
<td>Sound Reinforcement</td>
<td></td>
<td>Instructor workstation:</td>
<td>Leave ~10 feet coiled and label as SPEAKER</td>
<td>Ceiling location: Pull to the first speaker can location TBD and label as SPEAKER.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>18/4 plus, ground</td>
<td>1 ea. per projector(s)</td>
<td>Security</td>
<td>Public safety will terminate</td>
<td>Projector(s) to workstation</td>
<td>Workstation to security closet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>UTP CAT6A</td>
<td></td>
<td>Superior Essex 10Gain XP CAT6A – Plenum</td>
<td>Instructor workstation/ Lectern data switch uplink Connectivity</td>
<td>ANSI/TIA/EIA 568-B</td>
<td>Instructor workstation: surface mount inside the workstation.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-----------</td>
<td>---</td>
<td>--</td>
<td>---</td>
<td>-------------------</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>UTP Cat 6A</td>
<td>1</td>
<td>Superior Essex 10Gain XP CAT6A – Plenum</td>
<td>Instructor workstation/ Lectern Analog phone Wall mount</td>
<td>ANSI/TIA/EIA RJ-45 USOC</td>
<td>Instructor workstation: surface mount inside the workstation.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Single-mode fiber - 6 strands</td>
<td>1</td>
<td>Superior Essex</td>
<td>Instructor workstation/ Lectern data switch uplink Connectivity</td>
<td>Single-mode fiber LC connectors</td>
<td>Instructor workstation: surface mount inside the workstation</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AV equipment – yellow cabling, jacks, and patch cords

Commodity ethernet – green cabling or orange jacks and patch cords

Switch uplinks – red patch cords

ELECTRONIC CLASSROOM JACK TERMINATIONS

In addition, a Cat 5e cable, terminated on an RJ-45 USOC wall mount voice jack, will be provided at the instructor’s workstation/Lectern for an analog phone (exact location TBD). All Data wiring within the Electronic Classroom and to the local Telecommunications Room shall be Superior Essex Category 6A.

4.3.7 PATCH PANELS AND TERMINATIONS

Legacy/Match existing: Analog voice cable/jack - 4 pair category 5e - voice station data patch panels

Data cable, patch panels, and jack - 4 pair Cat 6A - Superior Essex
Fiber Optic Cable - 6 strands Single Mode - Superior Essex

–Ortronics - fiber 6-Pk

See Section 13 for part numbers of connectors and panels.

4.3.8 TABLE BOXES; CABLE RETRACTORS, UNDER-TABLE CABLE MANAGEMENT

A. Table Boxes: InteGreat™ A/V Table Boxes from Wiremold/Legrand

1. Cover: Brushed, anodized aluminum cover in a black or aluminum finish with beveled edges and a “soft-touch” handle.
 a. Cover contains a “pocket” door that fully recesses into the box when open, giving access to connections without obstructing the work surface. A finishing plate hides hardware on the activation surface and permits labeling of the AVIP plates.
 b. Cover flange allows for 1/4-inch [6.4mm] of forgiveness in the cut-out opening.

2. Activation Surface: Adjustable downward in 1/2-inch [12.7mm] increments, from one (1) inch to four (4) inches [25mm to 102mm] to allow the cover to close even when large style connectors are used.

3. Provide table boxes with a 12-foot SJT cord for easy connection to electrical infrastructure.

4. Supply tables boxes with a cable grommet kit that can accommodate up to eight (8) pull-out connections. Boxes shall also be capable of accepting up to five (5) Wiremold AVIP connectors.
5. Provide table boxes with two (2) 15-amp receptacles in the top compartment and one (1) 15-amp receptacle on the underside of the box.

B. **Cable Retractors**: InteGreat™ Series cable retractors; mount directly to InteGreat™ Series A/V Table Box or underside of the conference room table using a horizontal mounting bracket.

1. **Cable Retractors with Category 6A Cable**: Catalog No. TBCRCAT6A; loaded with 12 feet [3.66m] of Cat6 cable that extends out five (5) feet [1.52m] from the retractor. Supply a retractor with a female input from the building infrastructure and a male connector on the output side.

2. **Cable Retractors with VGA Cable**: Catalog No. TBCRVGA; loaded with 12 feet [3.66m] of VGA cable that extends out five (5) feet [1.52m] from the retractor. Supply a retractor with a female input from the building infrastructure and a male connector on the output side.

3. **Cable Retractors with HDMI Cable**: Catalog No. TBCRHDMI; loaded with 12 feet [3.66m] of HDMI cable that extends out five (5) feet [1.52m] from the retractor. Supply a retractor with a female input from the building infrastructure and a male connector on the output side. Provide an input side with the mounting tab that allows the installer to cable tie HDMI to the retractor to minimize the chances of loose connections. **Cable Retractors with 3.5MM Audio Cable**: Catalog No. TBCR3.5MM; loaded with 12 feet [3.66m] of audio cable that extends out five (5) feet [1.52m] from the retractor. Supply a retractor with a female input from the building infrastructure and a male connector on the output side.

4. **Cable Retractor Horizontal Mounting Brackets**: Catalog No.
TBCRHMK; permits the retractor to mount horizontally under the conference room table, enabling cable access through a table grommet. Multiple retractors can be mounted to each other by attaching the mounting brackets.

C. **Under-Table Cable Management** Kit: InteGreat™ Series under-table cable management kit provides clean cable management for power, communication, and A/V cables on the horizontal underside of the table.

1. Under Table Cable Management Kit: Catalog No. UTCM5; includes five (5) feet [1.524mm] length of the divided base, five (5) feet [1.524mm] length of the mounting hinge, rail, and four (4) latching clips; black, nonmetallic construction.

4.3.9 TRANSITION CHANNELS

D. Transition Channels: InteGreat™ Series transition channels continue cable management and protection from the underside of the table to the floor, where cables can gain access to building infrastructure. Channel fits directly into under table cable management kit on the underside of the table and mates with a poke-thru device or over-floor raceway for a smooth transition to building infrastructure.

1. Transition Channels: Catalog No. MRTC; consists of an aluminum center spline with a steel mounting plate and four (4) screws, black aluminum side channels, a black nonmetallic bottom boot, and two (2) black nonmetallic transition covers.

5. **LIGHTNING PROTECTION**

5.1 **LIGHTNING PROTECTION**
5.1.1 GENERAL

Lightning protection of telecommunications facilities is essential. While federal and state standards must be adhered to, local conditions may require additional investigations and/or modifications to meet site, equipment, environmental, or safety requirements.

NEC Articles 250 "Grounding" and 800 "Communications Circuits" cover general requirements for grounding, bonding, and protecting electrical and communications circuits. NFPA 78 "Lightning Protection" addresses zone protection and other beneficial items.

All cabling and wiring (including grounding to building ground) within the building and entrance facilities with protection from lightning and power failure via grounding and bonding shall be required by the contract documents.

5.1.2 MATERIALS

The two most frequently used lightning protectors are listed below. Contact DTS for a determination of the most appropriate protection for the condition.

- Circa Protector -- “Circa”, part number 1900A1-100, and Circa 3B3S-300 “Red” modules -100 for 100 pair.

- Use Circa, part number 1880ENA1/NSC-6 for single drops of 6-pair or less. Use Circa, part number 3B1E gas protector modules.

5.2 GROUNDING

5.2.1 GENERAL

All MCR (Node room) and BCR grounding shall use a single-point
scheme from the building’s main transformer. EIA/TIA 607 requirements must be followed.
Legrand/Ortronics shall be utilized for all grounding materials
All shields shall be bonded to a common ground.
All riser cables must be shielded and properly grounded to the building ground through the grounding facilities provided at the MCR or BCR.
All protector blocks shall be connected to the backboard ground busbar using NEC code 6 AWG copper wire.

5.3 BONDING

5.3.1 GENERAL

Bonding is to be durable, strong and of low impedance to assure electrical continuity. EIA/TIA 607 requirements must be followed. Legrand/Ortronics shall be utilized for all bonding materials.
The cable tray or wire way shall be grounded to the main building grounding system with a wire not smaller than #6 AWG copper. All conduit stubs and sleeves shall also be grounded to the building’s grounding system.
A resistance of .001 ohm or less indicates a high-quality junction and is required per the Building Industry Consulting Services International (BICSI) Telecommunications Distribution Methods Manual.

5.4 DRAWINGS

Refer any questions specifically not addressed in this document to DTS or UC Planning+Design+Construction.

6 INSPECTION AND TESTING/COMMISSIONING

6.1 INSPECTION OF WORK

6.1.1 GENERAL

DTS Telecommunications Infrastructure designees shall have access to construction
To enable DTS to inspect telecommunications facilities work, the contractor must:

6.1.1.1 Provide a progress schedule with the installation of telephone raceways and spaces shown as a separate item.

6.1.1.2 Immediately notify DTS Telecommunications Infrastructure contact Blake Stahl at stahlb@ucmail.uc.edu or Dan Drury at drurydy@ucmail.uc.edu of any change in architectural drawings and/or plans affecting telecommunications.

6.1.1.3 Provide proper access and facilities for inspections.

6.1.1.4 Notify DTS Telecommunications Infrastructure when any work is ready for inspection.

6.1.1.5 All underground work must be inspected and approved by DTS Telecommunications Infrastructure, UC Planning+Design+Construction, and Facilities Management before the site is covered with dirt or concrete. Failure to have the work inspected shall result in uncovering the area at the contractor’s expense.

Per contract documents, the contractor shall provide a final checkout certification letter and inspection reports to DTS Telecommunication Infrastructure on all telecommunications work.

6.2 TESTING

6.2.1 GENERAL

The contractor shall submit to DTS Telecommunications Infrastructure, a detailed test procedure to be used for every project. All Voice cables shall be tested for grounds, shorts, reversals, and
continuity of communications conductors and shields. All Data cables shall be tested for length, attenuation, impedance, grounds, shorts, reversals, and continuity of communications conductors and shields. Additional testing parameters for Category 6 and 6A cables when applicable can be found in Section 6.3.

*See Section 6.4.1 and Section 10 for testing requirements for fiber optic cable.

Before completion of any project, test results shall be submitted to DTS Telecommunications Infrastructure for final approval and acceptance and made part of the document. The contractor shall guarantee 100 percent good pairs on all cables.

DTS Telecommunications Infrastructure will perform verification testing if it deems necessary before accepting a job. Failure during testing will result in re-pulling cables at the contractor’s expense.

6.2.2 STATION CABLES

All category 5e station cables installed for non-data network applications shall be tested for continuity, and USOC wire mapping using a Fluke DSX2 (5000 or 8000) cable analyzer. Station cables that do not pass the Fluke analyzer test will be repaired or replaced by the contractor at no additional cost and re-tested to meet the required specifications. All Superior-Essex Category 6A and Category 6 cables when applicable, shall be tested according to the manufacturer’s recommendations. DTS recommends using a Fluke DSX2-8000 Cable Certifier for testing and certification of the Category 6 or 6A cable. Category 6 and or 6A station cables that do not pass the test will be repaired or replaced by the contractor at no additional cost and re-tested to meet the required specifications. The contractor will provide UC with documented machine-readable test results for all stations. The format will comply with DTS Communications Standards.

6.3 LOCAL AREA NETWORK
Category 6A and Category 6 data cables when applicable shall be tested to meet the manufacturer’s specifications for the type of cable installed. All tests shall be performed at the manufacturer’s specified maximum data rate of the cable and will be tested for the following:

- All cables and termination hardware shall be 100% tested for defects in installation and to verify cabling system performance under installed conditions according to the requirements of ANSI/TIA/EIA-568-C; marginal passes (*PASS) are not acceptable. All pairs of each installed cable shall be verified before system acceptance. Any defect in the cabling system installation including but not limited to cable, connectors, feed-through couplers, patch panels, and connector blocks shall be repaired or replaced to ensure 100% useable conductors in all cables installed. All cables shall be tested by this document, the ANSI/TIA/EIA standards, the Ortronics Certification Program Information Manual, and best industry practices. If any of these are in conflict, the Contractor shall bring any discrepancies to the attention of the project team for clarification and resolution.

All cables shall be tested by this document, the ANSI/TIA/EIA standards, the Ortronics Certification Program Information Manual, and best industry practices. If any of these are in conflict, the Contractor shall bring any discrepancies to the attention of the project team for clarification and resolution.

Copper Channel Testing

- All twisted-pair copper cable links shall be tested for continuity, pair reversals, shorts, opens, and performance as indicated below. Additional testing is required to verify Category performance

- Horizontal cabling shall be tested using a Fluke DSX2-8000 test unit for category 6 or 6A performance compliance.

The basic tests required are:
• Wire Map
• Length
• Attenuation

• NEXT (Near-end crosstalk)
• Return Loss
• ELFEXT Loss
• Propagation Delay
• Delay skew
• PSNEXT (Power sum near-end crosstalk loss)
• PSELFEXT (Power sum equal level far-end crosstalk loss)

• Continuity - Each pair of each installed cable shall be tested using a test unit that shows opens, shorts, polarity, pair-reversals, crossed pairs, and split pairs. Shielded/screened cables shall be tested with a device that verifies shield continuity in addition to the above-stated tests. The test shall be recorded as pass/fail as indicated by the test unit by the manufacturers' recommended procedures and referenced to the appropriate cable identification number and circuit or pair number. Any faults in the wiring shall be corrected and the cable re-tested before final acceptance.

• Length - Each installed cable link shall be tested for installed length using a TDR-type device. The cables shall be tested from patch panel to patch panel, block to block, patch panel to an outlet, or block to the outlet as appropriate. The cable length shall conform to the maximum distances outlined in the ANSI/TIA/EIA-568-C Standard. Cable lengths shall be recorded, referencing the cable identification number and circuit or pair number. For multi-pair cables, the shortest pair length shall be recorded as the length of the cable.
Category 6 Performance

Shall meet the channel requirements outlined below for a 100-meter, 4-connector channel.

<table>
<thead>
<tr>
<th>nCompass Channel Margin Guarantees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
</tr>
<tr>
<td>Margin vs. TIA-56C.2</td>
</tr>
</tbody>
</table>
• **Category 6A Performance**

Shall meet the channel requirements outlined below for a 100-meter, 4-connector channel.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Margin vs. TIA-56C.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insertion Loss</td>
<td>3%</td>
</tr>
<tr>
<td>NEXT</td>
<td>4 dB</td>
</tr>
<tr>
<td>PSNEXT</td>
<td>5 dB</td>
</tr>
<tr>
<td>Return Loss</td>
<td>4 dB</td>
</tr>
<tr>
<td>ACRF</td>
<td>8 dB</td>
</tr>
<tr>
<td>PSACRF</td>
<td>8 dB</td>
</tr>
<tr>
<td>PSAEXT</td>
<td>4 dB</td>
</tr>
<tr>
<td>PSAACRF</td>
<td>10 dB</td>
</tr>
<tr>
<td>ACR</td>
<td>7 dB</td>
</tr>
<tr>
<td>PSACR</td>
<td>7 dB</td>
</tr>
</tbody>
</table>

Test results, in [electronic copies in link ware and pdf](#) format, are to be provided to DTS before acceptance of the wiring.

Fiber Testing
Testing procedures shall be by the following:

- ANSI/TIA/EIA-568-B
- ANSI/TIA/EIA-568-B.1
- ANSI/TIA/EIA-526-7, Method A.1
- ANSI/TIA/EIA-526-14A, Method B
- TSB-140 Tier 1 fiber testing is required. Tier 2 Fiber Testing is recommended

Preparation

- Properly clean all connectors, adapters, and jumpers before testing.

- Ensure that the testing jumpers are of the same fiber core diameter and connector type as the fibers to be tested.

- The power meter shall be properly calibrated before testing. The contractor is to provide written confirmation of the calibration, with the power meter serial number, to the DTS or P+D+C Project Manager if requested. If this documentation is not available upon request, the Contractor shall re-test all-optical fiber cables after documented calibration of the power meter is accomplished.

Test Equipment

- Optical power meter and source (Certification tester Fluke, EXFO or Agilent preferred). Suitable OTDR with launch cable for Tier 2 testing. OTDR Launch Cable length recommendation is 75 meters for MMF and 300 meters for SMF systems.

Testing

- All Multimode fibers shall be tested to the requirements of ANSI/EIA/TIA-568-B, TIA-525-14A (Method A.1), and
TSB-140. Optical fibers shall be tested at both 850 nm and 1300 nm wavelengths for end-to-end insertion loss and Bi-Directional (MTR to TR-1, TR-1 to MTR)

- All Single-mode fibers shall be tested to the requirements of ANSI/EIA/TIA-568-B, TIA-526-7 (or Method A.1), and TSB-140. Optical fibers shall be tested at both 1310 nm and 1550 nm wavelengths for end-to-end insertion loss and Bi-Directional (MTR to TR-1, TR-1 to MTR)

- Ensure that the power meter and light source are set to the same wavelength before testing each fiber.
- Connect an appropriate test jumper to the light source and power meter.
- Power on both the power source and light meter, allowing them to stabilize.
- Record the reference power reading in dB. If the jumper is removed from the light source for any reason, the reference power reading must be re-established.
- Insert a second appropriate jumper, using an appropriate adapter, between the first jumper and the power meter. Record the power reading in dB.
- Reference TSB-140 for additional recommendations and testing guidelines.
- Provide written documentation of all test results to the University of Cincinnati. Provide an electronic copy of the test results, in original tester format, to the manufacturer when registering the project for warranty online.
6.4 DOCUMENTATION STANDARDS

6.4.1 CONTRACTOR DOCUMENTATION REQUIREMENTS

6.4.1.1 DTS will provide the identification number range to be used for the building(s). Before any wiring begins, the installing contractor shall provide DTS a list of jack identification numbers used, their corresponding room numbers, patch panel termination points, and drawings that detail the location within the room. Jack identification numbers at the jack locations shall also be placed on as-built drawings provided by the contractor. An updated spreadsheet detailing the above-mentioned information shall be provided by the contractor as additions or changes occur and a final copy after project completion.

6.4.1.2 Labeling of all termination hardware and cabinets with the information provided by DTS.

6.4.1.3 A complete set of as-built drawings before completion of the project, both on marked-up blueprints and in AutoCAD (.dwg) format or PDF format. DTS will specify the version/release number of AutoCAD acceptable at the time of the project award.

6.4.1.4 OTDR test results to manufacturer's specifications and UC standards for all fiber optic feeders installed. Results shall be furnished both in hard copy and on compact discs in AutoCAD (.dwg) format. The documentation must include OTDR readings, fiber route diagrams, and end-to-end attenuation results for multimode and singlemode fiber optic feeder cables. All fiber OTDR readings shall be made bi-directional on all fiber optic feeder cable.

6.4.1.5 Fiber optic riser cable shall be tested with a light meter only. Light meter tests shall be performed to the manufacturer's specifications and UC standards. Light meter test results, including recorded lengths, shall be provided in electronic files of PDF format.
6.4.1.1.6 Station cable tests shall be performed to the manufacturer’s specifications and DTS standards. Test results shall be provided in electronic files of PDF format.

6.4.1.1.7 Riser cable tests shall be performed to the manufacturer’s specifications and DTS standards. Test results shall be provided in electronic files of PDF format.

6.4.1.1.8 Trunk cable tests shall be performed to the manufacturer’s specifications and DTS standards. Test results shall be provided in electronic files of PDF format.

6.4.1.1.9 The contracted installer must submit all pertinent documents to Ortronics to secure the University’s horizontal cabling Warranty.

6.4.2 UC PROVIDED DOCUMENTATION

6.4.2.1 Test documentation shall be provided in an electronic format (in both link ware and pdf) within three weeks after the completion of the project. The electronic files will be named “Test Documentation-Project Name-Date” (with the date of completion (month/year)). The results shall include a record of test frequencies, cable type, conductor pair and cable (or outlet) I.D., measurement direction, reference setup, and crew member name(s). The test equipment name, manufacturer, model number, serial number, software version, and last calibration date will also be provided at the end of the document. Unless the manufacturer specifies a more frequent calibration cycle, an annual calibration cycle is anticipated on all test equipment used for this installation.

The test document shall detail the test method used and the specific settings of the equipment during the test as well as the software version being used in the field test equipment.

6.4.2.2 The field test equipment shall meet the requirements of ANSI/TIA/EIA-568-C
including applicable TSBs and amendments. The appropriate Level III tester shall be used to verify Category 6 and 6A cabling systems.

6.4.2.3 Printouts generated for each cable by the wire (or fiber) test instrument shall be submitted as part of the documentation package. The telecommunications contractor must furnish this information in electronic format.

6.4.2.4 Test documentation shall also be provided to the manufacturer within three weeks after the completion of the project. Test results shall be uploaded when registering the project for warranty using the manufacturer’s online system. Test results shall be in the tester’s original format (Link ware from Fluke) on the manufacturer’s website. All test results must show a PASS; marginal passes (*PASS) are not accepted.

6.4.2.5 When repairs and re-tests are performed, the problem found and corrective action taken shall be noted, and both the failed and passed test data shall be documented.

6.4.3 Warranty

- UC has adopted the nCompass solution for all internal infrastructure wiring as it pertains to voice and data networking for both copper and fiber systems. All installations must be performed according to the nCompass System Warranty and Performance Application and must be installed by Ortronics CIPs.

- The nCompass Warranty combines a limited lifetime (40 years) extended product and applications assurance warranty. Ortronics (Manufacturer) can provide the warranty directly to the end user.

- An Extended Product Warranty shall be provided which warrants the
functionality of all components used in the system from the date of registration. The Extended Product Warranty shall warrant the installed horizontal and/or backbone copper, and both the horizontal and the backbone optical fiber portions of the cabling system.

- The Application Assurance Warranty shall cover the failure of the wiring system to support the applications that are designed for the link/channel specifications of ANSI/TIA/EIA–568-B.1. These applications include, but are not limited to, 10BASE-T, 100BASE-T, 1000BASE-T, and 155 Mb/s ATM.

- The contractor shall provide a warranty on the physical installation.

6.4.4 Final Acceptance & System Certification

Completion of the installation, in-progress and final inspections, receipt of the test and as-built documentation, and successful performance of the cabling system for two weeks will constitute acceptance of the system. Upon successful completion of the installation and subsequent inspection, the end user shall be provided with a numbered certificate, from Ortronics, to register the installation.

7 FIRE STOPPING

7.1 OVERVIEW

Provide fireproof seals by the National Fire Protection Association (NFPA) and the National Electric Code (NEC), Article 300-21, and EIA/TIA
569 Standards.

Firestop all penetrations by the current edition of the National Electrical Code.

Do not use concrete for fire stopping on cable trays, wireways, or conduits. Contractors who use this method will be required to replace all cables affected.

7.1.1 GENERAL

EZ Path Fire-rated cable pathway devices shall be used in fire-rated construction for ALL low-voltage, video, data, and voice cabling, optical fiber raceways, and certain high-voltage cabling where frequent cable moves, adds and changes may occur. Pathways required for high-voltage cabling will be detailed on the prints. Such devices shall:

A. Meet the hourly fire-rating of fire-rated wall and or floor penetrated.

B. Be tested for the surrounding construction and cable types involved.

C. Have UL Systems permitting cable loads from; “Zero to 100% Visual Fill.” This requirement eliminates the need for fill-ratio calculations to be made by cable technicians to ensure cable load is within the maximum allowed by UL System.

D. Not have an inner fabric liner that tightens around and compresses cables tightly together encouraging potential cable damage or interference.

E. Be “Zero-Maintenance”, zero-maintenance is defined as; No action required by the cabling technician to open and/or close pathway for cable moves, adds or changes, such as, but not limited to:
1. Opening or closing of doors.

2. Spinning rings to open or close fabric liner.

3. Removal and or replacement of any material such as but not limited to, firestop caulk, putty, pillows, bags, foam muffins, foam, foam plugs, foam blocks, or foam closures of any sort.

4. Furnish a letter from the manufacturer certifying compliance with this definition of “Zero-Maintenance”.

F. Pathways shall be engineered such that two or more devices may be ganged together for larger cable capacities.

G. Pathways shall be engineered to be re-enterable so they can be retrofitted and removed from around existing cables without cutting and re-splicing them.

H. Cable Pathway Devices passing vertically through floors shall have equal F & T Rating. (See UL System # F-A-3037, Item #4 “EZ-PATH Grid T-Rating Kit” Part # TRK444)

I. Affix adhesive wall label immediately adjacent to devices to communicate to future cable technicians, authorities having jurisdiction, and others the manufacturer of the device and the corresponding UL System number installed.

Non-rated cable pathway devices shall be used in non-fire-rated construction for ALL low-voltage, video, data, and voice cabling, optical fiber raceways, and certain high-voltage cabling where
frequent cable moves, adds and changes may occur. Pathways required for high-voltage cabling will be detailed on the prints. Such devices shall:

A. Limit the movement of smoke and sound of wall and or floor penetrated.

B. Restore the STC Rating of the penetrated wall.

C. Provide L Ratings of <1 CFM when empty and <2.5 CFM at all other loadings up to 100 percent.

D. Accommodate cable loads from; “Zero to 100% Visual Fill”

E. Not have an inner fabric liner that tightens around and compresses cables tightly together encouraging potential cable damage or interference.

F. Be “Zero-Maintenance”, zero-maintenance is defined as; No action required by the cabling technician to open and/or close pathway for cable moves, adds or changes, such as, but not limited to:

 a. Opening or closing of doors.
 b. Spinning rings to open or close fabric liner.
 c. Removal and or replacement of any material such as, but not limited to, firestop caulk, putty, pillows, bags, foam muffins, foam, foam plugs, foam blocks, or foam closure of any sort.
 d. Furnish letter from the manufacturer certifying compliance with this
definition of “Zero-Maintenance”.

G. Pathways shall be engineered such that two or more devices may be ganged together for larger cable capacities.

H. Pathways shall be engineered to be re-enterable so they can be retrofitted and removed from around existing cables without cutting and re-spooling them.

I. Affix adhesive wall label immediately adjacent to devices to communicate to future cable technicians, authorities having jurisdiction, and others the manufacturer of the device and the corresponding UL System number installed.

As an alternative to using a fire-rated or non-rated cable pathway device for single low voltage cables (up to 0.27 in. (7 mm) O.D) penetrating one or two-hour, gypsum board/stud wall assemblies or non-rated assemblies, either as a through-penetration or as a membrane-penetration, a fire-rated cable grommet may be substituted. The product shall consist of a molded, two-piece, plenum-rated grommet having a foam fire and smoke-sealing membrane that conforms to the outside diameter of the individual cable. The grommet product shall be capable of locking into place to secure the cable penetration within the wall assembly.

The grommet shall be UL Classified and tested to the requirements of ASTM E814(UL1479) and CAN/ULC S115.

J. Cable pathway shall replace conduit sleeves in walls and floors, and when installed individually on floors, devices shall pass through core-drilled openings.
utilizing tested floor plates.

K. When multiple units are ganged in floors, devices shall be anchored using a tested grid.

L. When installed individually in walls, devices shall pass through core-drilled openings utilizing tested wall plates or integrated flanges.

M. When multiple units are ganged in walls, devices shall be anchored using a tested grid.

N. Cable tray shall terminate at each barrier (wall) and resume on the other side such that cables pass independently through devices. The cable tray shall be properly supported on each side of the barrier (wall). The cable tray shall NOT pass through.

8 LOCAL AREA NETWORKS
8.1 OVERVIEW
8.1.1 GENERAL

All connections must be clearly labeled at both ends.
Use a 1-inch home run conduit from the outlet to the cable tray, pathway, or directly to the telecommunications room, with pull boxes every 100 feet. Another method would be to stub the conduits above the drop ceiling and provide J-hooks no more than 60 inches (5 feet) apart from the nearest section of the cable tray or TR/BCR.

Note: Under no circumstances shall flex-type conduit be used. The total wire path length from the outlet to the telecommunications room, including loss due to terminations, must not exceed 295 feet (90 meters) from the TR in any case.

8.1.2 DETERMINING REQUIREMENTS
Consult DTS Telecommunications Infrastructure for details

8.1.3 WIRING TYPE
See Section 14 for specifications for UTP data cable.

8.1.4 TWISTED PAIR
Use only Ortronics RJ-45 category 6A connectors.

Maximum segment length, including loss due to terminations, is 295 feet (90 meters) from the IDF.

Do not run data (Ethernet) in the same jacket with the voice because of ring voltage.

Office patch cords must be Legrand/Ortronics Category 6A twisted pair and at a minimum length of 10 feet. DTS will provide the patch cords needed and bill the project.

Closet patch cords must be Legrand/Ortronics Category 6A twisted pair and at a minimum length of 7 feet. DTS will provide the patch cords needed and bill the project.

Labels containing the block location shall be installed at the RJ-45 end of all Legrand/Ortronics category 6A patch cords.
All jack positions must be wired.

8.1.5 WIRELESS LANs

NOTE: Contractors will be responsible for installing Wireless Access Points both in common areas and hospitality (DTS will provide WAPs and patch cords needed and bill the project) on all construction/renovation projects.

Before commencing any construction or renovation activities, it is imperative to notify Digital Technology Solutions and furnish them with the planned renovation CAD drawings. To safeguard against any loss or damage to equipment, all access points and mounting hardware must be cataloged in advance. DTS will then conduct a simulated survey using the provided CAD drawings, assessing the optimal placement of wireless access points (APs) to ensure comprehensive coverage across the designated area.

This survey will consider factors such as building layout, obstacles, and potential signal interference, with the aim of identifying the most suitable locations for APs. The proposed design will undergo a thorough review with the project team to address any concerns regarding AP placement. It is essential to maintain consistent AP heights throughout each floor.

In cases where equipment slated for removal is deemed End of Life (EOL), the project is responsible for procuring new equipment. Contractors will proceed to install the new APs after the completion of cabling and switch installation. This comprehensive approach ensures a seamless integration of technology within the renovated or constructed space.

Due to the unique nature of wireless LANs and the probable interference between access points if frequency allocations (channel assignments) are not controlled, only approved wireless LAN equipment installed and configured by the Office of Digital Technology Solutions (DTS) will be permitted on campus.

DTS has implemented two tiers of security for wireless network access on campus.
• The upper tier uses Wi-Fi Protected Access 2 (WPA2) which implements mandatory elements of the IEEE 802.11i standard. Users log onto the network using their Central Login user/password credentials and their data is then encrypted using the AES encryption standard.

• A lower tier of security for devices unable to support WPA2 with AES encryption is WPA2 with a pre-shared key. This access will also be restricted by MAC address.

• DTS will be responsible for channel assignment for all campus-wide wireless Network equipment.

*See Section 13.9.1 for approved intra-building wireless LAN equipment

Inter-building wireless network equipment will be evaluated and approved by DTS on a case-by-case basis.

8.1.6 WIRELESS LAN ACCESS POINT COVERAGE

DTS has provided 100% wireless coverage across the university. All working spaces in buildings should be adequately covered with a wireless signal. Exclusions to this are areas predominately used for mechanical and storage functions.

Note that the wireless AP access should not be substituted for the hard-wired data jack at the instructor location(s) in classrooms, lecture halls, and auditoriums.

• Outdoor Spaces: Varies dependent on the area to be covered and obstructions such as buildings and trees. One access point with a high gain antenna will cover up to a 500 ft. radius at full speed when no obstructions are present between the access point antenna and the user.

• Mechanical Rooms: Consult the Division of Administration and Finance Planning+ Design+ Construction. Some rooms may require wireless access for energy management and security devices.
• Building Communication Rooms and Telecommunications closets: To be determined on a case-by-case basis.

• Other spaces not covered above will be determined on a case-by-case basis during the design stage of the project.

9 WIDE AREA NETWORKS

9.1.1 GENERAL/OVERVIEW

The current DTS network consists of Cisco 9300 series distribution switches providing redundant 1 gig fiber uplinks to each closet. The closet switches provide 100 MB to the desktop and can provide power-over-Ethernet for devices such as wireless access points and VOIP phones. The core of the network provides 40 GB of redundant uplinks to each of the distribution switches. Switches are to be installed in a stack formation with no more than 4 switches (CISCO 9300 Catalyst) per stack. UPSs are to be installed with each switch stack in the order of 1 UPS for every 2 switches. Each floor of a building will require 1 switch stack at minimum to isolate phones for 911 location services. For questions about E911 contact DTS Network Operations at ucnoc@ucmail.uc.edu

9.1.2 SYSTEM DESIGN

DTS will provide the necessary design using an estimate process. The location of service access points and a list of materials required for the installation or expansion of the network will be provided.

9.1.3 DISTANCE LIMITATIONS

The distances are covered in Section 8.

9.1.4 INSTALLATION

Local mounting practices require hubs to be mounted to a relay rack
that is bolted to the floor. The top of the rack is to have a route to the feeder conduits. The preferred method is a center-hung cable tray if racks are in the middle of the room or away from the perimeter of the TR/BCR. Otherwise, a wall mount version should be used extending to the tray that wraps the perimeter of the Telecommunications Closet.

9.1.5 MOUNTING

Provide two duplex outlets; to be attached to the 19” equipment rack(s). It shall have a dedicated breaker feed.

9.1.6 STANDARD EQUIPMENT

*See Section 13 for the UC standard router and components.

10 FIBER OPTIC TECHNOLOGY

10.1 OVERVIEW

10.1.1 GENERAL

Every effort was made to ensure that the information in this document
was complete and accurate at the time of printing. However, technology is ever-changing, becoming more efficient and effective, and is subject to change. DTS shall approve all fiber optic planning, installation, and specifications in advance.

All cable that is to be connected or disconnected from the campus telecommunications network; telephone, data, and video, to include, Local Area Network, Wide Area Network, and fiber optics, shall be done by DTS Telecommunications Infrastructure contact Blake Stahl at stahlb@ucmail.uc.edu or its designee.

The cable shall be new, unused, and of current design and manufacture. Contact DTS Telecommunications Infrastructure contact Blake Stahl at stahlb@ucmail.uc.edu for the type of fiber optic cable to be used.

At the request of DTS, the cable manufacturer shall provide installation procedures and technical support concerning the items contained in this document.

* DTS will provide the project with fiber jumpers and all required patch cords and bill the project per price of jumpers except for Electronic Classrooms (see section 4.1.2).

10.2 INSTALLATION
10.2.1 GENERAL

All new outside plant conduits shall include at least two Multi-Guard Multi-Cell conduits. Proper parts are to be used, consult DTS contact
Blake Stahl at stahlb@ucmail.uc.edu or Dan Drury at drurydy@ucmail.uc.edu. The inner duct is only used on existing facilities.

All fiber optic cables shall be terminated via LC fusion splice on connectors, unless otherwise specified, and properly connected to the distribution panel utilizing a cable end kit for each cable and an end kit for each tube. There shall be a 20-foot service loop at all splice locations and fiber patch panel locations. Fiber cable metallic sheath or strength member shall be grounded to a proper ground.

When installing fiber optic cable, in existing conduit, which is not Multi-Cell or does not contain a flow duct, it shall be pulled in a protective inner liner, minimum 3/4 inch inside diameter. When placed in a cable tray or on a runway where there is the possibility of someone standing, walking, or sitting on the cable, it shall be placed inside a protective liner. When a floor trench is utilized (Walker type or equivalent) one chamber will be used exclusively for the fiber.

All cable placed along runways, relay racks, and distribution shelves shall comply with the manufacturer’s minimum bend radius requirements for that cable. When the cable is secured by a ty wrap or other fasteners, it shall not be pulled so tight at any point that the cable jacket is crushed flat or indented. The cable must move back and forth for the MIC cable.

Use wireways on verticals of relay racks to accommodate the fiber cable on the backside and the fiber patch cords to the front of the racks. See Section 14 for part numbers.

There should be a minimum of 20 ft. slack left in a telecommunications closet, tagged, and mounted in a circular configuration on fire-rated plywood (3/4 inches). This is necessary in the event of a fiber break.

All fiber strands shall be terminated by the industry standard color codes.
Label all fiber cables and all fiber strands at termination locations. DTS Telecommunications Infrastructure will provide a fiber cable name.

Test all strands using an optical time domain reflectometer (OTDR) and optical loss test sets (OLTS). Provide computer-readable test results of each fiber strand to DTS.

*See Section 6 for additional testing information.

10.3 SPECIFICATIONS

10.3.1 QUALITIES

For exact specifications contact DTS Telecommunications Infrastructure.

All fibers in the cable must be usable fibers, meet required specifications, and be terminated and tested by the installing contractor.

All optical fibers shall be sufficiently free of surface imperfections and inclusions to meet the optical, mechanical, and environmental requirements of this specification.

The normal fiber for outside plant or building entrance cable will be a single-mode cable. Entrance Fiber counts will be determined based on the number of TRs required for that building. We now require a minimum of 24 strands of single-mode fiber for each TR. TRs that vary from 24 need to be approved by DTS. The size and overall count of the entrance fiber must at minimum, be large enough to accommodate the fiber riser to each TR in that building. Associated counts are based on occupancy potential, and the number of active electronics required. DTS must be consulted to insure adequate size and composition. Superior-
Essex fiber part numbers are listed in Section 13. This fiber cable meets or exceeds the following minimum specifications:

62.5/125-micron multimode fiber (only utilized when matching up with existing 62.5 fiber)

- **End-to-end attenuation**
 - 3.0 dB @ 160 MHz @ 1310 Nm per kilometer
 - 1.50 dB @ 500 MHz @ 1300 Nm per kilometer

Superior Essex OM3 laser optimized 50/125 Multimode

- 3.0/1.5 dB @ 850/1300 nm; minimum LED: 1500/500 MHz

Standard–only serial gigabit Ethernet distance 600/600m
 - (850/1300nm) 10 gig distance guarantee 300m
 - 10 gig distance guarantee 550m

50/125-micron multimode fiber

- **End-to-end multimode attenuation**

Single mode fiber

- 1.0 dB @ 1310 Nm per kilometer
- .75 dB @ 1550 Nm per kilometer

11 MISCELLANEOUS AND SPECIAL SITUATIONS

11.1 HANDICAPPED ACCESS

11.1.1 GENERAL
All conduit outlets for house phones, corridor phones, courtesy phones, Area of Rescue, or Emergency Help phones are to meet height and location requirements in the Americans with Disabilities Act for handicapped access. This standard only refers to telecommunication requirements. All other utilities are the responsibility of the department involved.

Whereas any of the phones or associated enclosures require electrical service, the project electrical contractor shall provide such electrical service and connections.

11.2 MATERIALS

Materials will be determined on a case-by-case basis. The DTS Telecommunications Infrastructure must be consulted.

11.2.1 SWIMMING POOLS

PVC conduit and plastic molding are not acceptable except in caustic environments such as swimming pools. Aluminum is not acceptable in caustic environments.

When poolside telephone service is desired and there is no building near to hang attachments on, install a pedestal and run a 1-1/4-inch conduit to the location. If the conduit length is longer than 100 feet, install a pull box according to NEC.

11.2.2 HELP AND ELEVATOR TELEPHONES

GENERAL

All conduit outlets for Emergency Help phones, Area of Rescue, or courtesy phones are to meet height and location requirements in the
Americans with Disabilities Act for handicapped access. This standard only refers to telecommunication requirements. All other utilities are the responsibility of the department involved.

Where Emergency Help phones or Help phone enclosures require electrical service, the project electrical contractor shall provide such electrical service and connections.

11.2.3 HELP PHONE CABLING

Data cables for Emergency “Help Phones” will be pulled from the proposed Help Phone location to the nearest or most appropriate TR.

If the Help Phone is on the exterior/outside and is stand-alone (installed on a pylon), it requires a Superior Essex indoor/outdoor rated 4 pair Cat6A or better cable, installed from the Pylon/Help Phone (with a protector block) to a suitable location inside the nearest or most appropriate building...where it can be terminated on a patch panel and grounded if needed.

*See Section 13 for a list of the standard equipment used in these applications.

Note the electrical requirements for outside standalone mounting of Help Phones.

11.2.4 Digital Signage

When providing wiring for Digital Signage the environment must be taken into consideration and the appropriate cable should be installed...e.g., fiber optic or indoor or outdoor rated data cable.

*See Section 13 for a list of standard materials used in these applications.

12 MISCELLANEOUS AND SPECIAL SITUATIONS

12.1 OVERVIEW

12.1.1 GENERAL
To design facilities for an effective telecommunications system, the designer and installer must be familiar with national and local regulations. Both the designer and the contractor must be familiar with and adhere to the standards of the telecommunications and building industries.

EXTREMELY IMPORTANT:

All structured cabling and supportive backbone cabling for any University of Cincinnati Construction or renovation project MUST be installed by one of the Structured Cabling vendors awarded to UC’s Term Contract at that time.

Vendor installation companies must be Legrand/Ortronics certified installers at the CIP level. The CIP certification allows the company to offer the nCompass limited lifetime warranty for both copper and fiber optics from Legrand/Ortronics and Superior Essex. This is a mandatory requirement in our university to obtain the enhanced performance & application warranty on the installation. NO exceptions will be permitted on this requirement and the contractor shall supply a copy of COMPANY’S certification before any project is awarded.

The following link will direct prospective contractors to the program details and certification process.

http://www.legrand.us/certification

12.1.2 AGENCIES

The following agencies and their codes, standards, and regulations shall govern all telecommunications work performed at the University of Cincinnati.
13 CABLE AND NETWORK STANDARD EQUIPMENT

1. All voice and data cable installations associated with new construction, or renovation projects that include more than
50% of a TR/IDF must be Legrand/Ortronics authorized nCompass Category 6A Cabling installations for all data drops (including VoIP phones). Please confirm with DTS before installation in these situations.

2. For existing or partial building renovation projects, that will be less than 50% of a TR/IDF we will continue to install Superior Essex /Legrand Ortronics Cat 6 data cabling with Category 6 patch panels for data (including VoIP) where we’re matching existing Cat 6 installs only. Please confirm with DTS before installation in these situations.

3. Those buildings that currently have a Belden (media twist)/TE Connectivity install base will receive Superior Essex/Legrand Ortronics Category 6 add-on.

4. All network equipment switches (CISCO Catalyst 9300), access points (CISCO), hospitality access points (CISCO), and UPS (TRIPP-LITE) will be purchased through the project and provided from DTS.

5. All patch cords and fiber jumpers needed will be purchased through the project and provided by DTS Telecommunications Infrastructure except for Electronic Classroom (see section 4.1.2).

6. Any excess or leftover material from the project needs to be returned to DTS as this material is the property of UC.

13.1 VOICE
13.1.1 VOICE CABLE

<table>
<thead>
<tr>
<th>ITEM</th>
<th>MANUFACTURER</th>
<th>PART NUMBER</th>
</tr>
</thead>
</table>

87
13.1.2 VOICE WIRING EQUIPMENT

<table>
<thead>
<tr>
<th>ITEM</th>
<th>MANUFACTURER</th>
<th>PART NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 pr. 110 Block w/Legs</td>
<td>Ortronics</td>
<td>OR-30200145</td>
</tr>
<tr>
<td>300 pr. 110 Block w/Legs</td>
<td>Ortronics</td>
<td>OR-30200007</td>
</tr>
<tr>
<td>300 pr. 110 Block w/o Legs</td>
<td>Ortronics</td>
<td>OR-30200022</td>
</tr>
<tr>
<td>110 Block Wall Module</td>
<td>B-Line</td>
<td>SB7210201</td>
</tr>
<tr>
<td>4 pr. Clips</td>
<td>Ortronics</td>
<td>OR-30200109</td>
</tr>
<tr>
<td>5 pr. Clips</td>
<td>Ortronics</td>
<td>OR-30200110</td>
</tr>
<tr>
<td>Wire Management for TR</td>
<td>Ortronics</td>
<td>OR-30200139</td>
</tr>
<tr>
<td>25 Pair Protector</td>
<td>Circa</td>
<td>1890BC1-25</td>
</tr>
<tr>
<td>50 Pair Protector</td>
<td>Circa</td>
<td>1890BC1-50</td>
</tr>
<tr>
<td>100 Pair Protector</td>
<td>Circa</td>
<td>1900A1-100K</td>
</tr>
<tr>
<td>Solid State Protector Module for 189B1</td>
<td>Circa</td>
<td>3B1E</td>
</tr>
<tr>
<td>Protection Block (66 connection must add gas modules 3B1E (black) or 3B3E (red))</td>
<td>Circa</td>
<td>2626QC/QC</td>
</tr>
<tr>
<td>Gas state Protector 5 Pin Black with Heat Coil</td>
<td>Circa</td>
<td>4B1E</td>
</tr>
<tr>
<td>Protector Module 5 Pin Red Solid state with Heat Coil</td>
<td>Circa</td>
<td>4B3S-75</td>
</tr>
<tr>
<td>Protector module 5 Pin Red Solid state w/o Heat coil</td>
<td>Circa</td>
<td>3B3S-300</td>
</tr>
<tr>
<td>Protector Module 5 Pin Black Solid state with Heat Coil</td>
<td>Circa</td>
<td>4B1S-300</td>
</tr>
<tr>
<td>6 Pair Protector</td>
<td>Circa</td>
<td>1880ENA1/NSC-6</td>
</tr>
</tbody>
</table>

13.2 DATA

13.2.1 DATA CABLE
13.2.2 DATA WIRING EQUIPMENT

<table>
<thead>
<tr>
<th>ITEM</th>
<th>MANUFACTURER</th>
<th>PART NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Superior-Essex Blue Plenum DataGain</td>
<td>Superior-Essex</td>
<td>66-240-2B</td>
</tr>
<tr>
<td>Superior-Essex Green Plenum 10 Gain XP+</td>
<td>Superior-Essex</td>
<td>6B-272-5B (replacement part number from 6H-272-5B)</td>
</tr>
</tbody>
</table>

13.2.3 PATCH CORDS

DTS Telecommunications Infrastructure will provide the patch cords for the project except for Electronic Classroom outlets (see section 4.1.2)

<table>
<thead>
<tr>
<th>ITEM</th>
<th>MANUFACTURER</th>
<th>PART NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cat 6 Data Trac Jack Green</td>
<td>Ortronics</td>
<td>OR-TJ600-45</td>
</tr>
<tr>
<td>Cat 6A Data Trac Jack Orange</td>
<td>Ortronics</td>
<td>OR-TJ6A-43</td>
</tr>
<tr>
<td>Cat 6A A/V Data Trac Jack Yellow</td>
<td>Ortronics</td>
<td>OR-TJ6A-44</td>
</tr>
<tr>
<td>Wall Jack Face Plate 4 Position</td>
<td>Ortronics</td>
<td>OR-40300546</td>
</tr>
<tr>
<td>Face Plate Blank Filler</td>
<td>Ortronics</td>
<td>OR-42100002</td>
</tr>
<tr>
<td>Category 6 – 24 patch panel w/wire manager</td>
<td>Ortronics</td>
<td>OR-PHD66U24</td>
</tr>
<tr>
<td>Category 6A-24 port patch panel w/wire manager</td>
<td>Ortronics</td>
<td>OR-PHD6AU24</td>
</tr>
<tr>
<td>Legacy (Cat 6)</td>
<td>Ortronics</td>
<td>RDC607-06</td>
</tr>
<tr>
<td>--</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>7ft Cat 6 Reduced Diameter Clarity Blue Patch cord (RDC)</td>
<td>Ortronics</td>
<td>RDC610-06</td>
</tr>
<tr>
<td>10ft Cat 6 Reduced Diameter Clarity Blue Patch cord (RDC)</td>
<td>Ortronics</td>
<td>RDC615-06</td>
</tr>
<tr>
<td>15ft Cat 6 Reduced Diameter Clarity Blue Patch cord (RDC)</td>
<td>Ortronics</td>
<td>RDC6107-03</td>
</tr>
<tr>
<td>Data</td>
<td>Ortronics</td>
<td>RDC61010-03</td>
</tr>
<tr>
<td>7ft Cat 6A Reduced Diameter Clarity Orange Patch cord (RDC)</td>
<td>Ortronics</td>
<td>RDC61015-03</td>
</tr>
<tr>
<td>10ft Cat 6A Reduced Diameter Clarity Orange Patch cord (RDC)</td>
<td>Ortronics</td>
<td>RDC61010-09</td>
</tr>
<tr>
<td>15ft Cat 6A Reduced Diameter Clarity Orange Patch cord (RDC)</td>
<td>Ortronics</td>
<td>RDC61015-09</td>
</tr>
<tr>
<td>Wireless Access Point</td>
<td>Ortronics</td>
<td>RDC61007-09</td>
</tr>
<tr>
<td>7ft Cat 6A Reduced Diameter Clarity White Patch cord (RDC)</td>
<td>Ortronics</td>
<td>RDC61007-03</td>
</tr>
<tr>
<td>10ft Cat 6A Clarity Reduced Diameter White Patch cord (RDC)</td>
<td>Ortronics</td>
<td>RDC61010-03</td>
</tr>
<tr>
<td>15ft Cat 6A Clarity Reduced Diameter White Patch cord (RDC)</td>
<td>Ortronics</td>
<td>RDC61015-03</td>
</tr>
<tr>
<td>A/V Applications</td>
<td>Ortronics</td>
<td>RDC61007-04</td>
</tr>
<tr>
<td>7ft Cat 6A Reduced Diameter Clarity Yellow Patch cord (RDC)</td>
<td>Ortronics</td>
<td>RDC61010-04</td>
</tr>
<tr>
<td>10ft Cat 6A Reduced Diameter Clarity Yellow Patch cord (RDC)</td>
<td>Ortronics</td>
<td>RDC61015-04</td>
</tr>
<tr>
<td>15ft Cat 6A Reduced Diameter Clarity Yellow Patch cord (RDC)</td>
<td>Ortronics</td>
<td>RDC61015-05</td>
</tr>
<tr>
<td>UPS</td>
<td>Ortronics</td>
<td>RDC61015-05</td>
</tr>
<tr>
<td>15 ft Cat 6A Reduced Diameter Clarity Green Patch Cord (RDC)</td>
<td>Ortronics</td>
<td>RDC61015-05</td>
</tr>
</tbody>
</table>
13.3.1 FIBER OPTIC CABLE

<table>
<thead>
<tr>
<th>Item</th>
<th>Manufacturer</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>12-strand SM armored fiber</td>
<td>Superior-Essex</td>
<td>L4012K401</td>
</tr>
<tr>
<td>12-strand MM armored fiber OM3</td>
<td>Superior-Essex</td>
<td>L4012N401</td>
</tr>
<tr>
<td>24-strand SM armored fiber</td>
<td>Superior-Essex</td>
<td>L4024KK1Q</td>
</tr>
<tr>
<td>24-strand MM armored fiber OM3</td>
<td>Superior-Essex</td>
<td>L4024NK1Q</td>
</tr>
</tbody>
</table>

13.3.2 FIBER OPTIC WIRING EQUIPMENT

<table>
<thead>
<tr>
<th>Item</th>
<th>Manufacturer</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Fiber install: Infinium</td>
<td>Ortronics</td>
<td>HDFP-LCD12LC</td>
</tr>
<tr>
<td>Infinium Conn. Panel 6 duplex LC for MM</td>
<td>Ortronics</td>
<td>HDFP-LCD12AC</td>
</tr>
<tr>
<td>Infinium Conn. Panel 6 duplex LC for SM</td>
<td>Ortronics</td>
<td>INFC01U-M4-E</td>
</tr>
<tr>
<td>Infinium Fiber Housing 1U (4 panels)</td>
<td>Ortronics</td>
<td>INFC02U-M4-E</td>
</tr>
<tr>
<td>Infinium Fiber Housing 2U (8 panels)</td>
<td>Ortronics</td>
<td>INFC04U-M4-E</td>
</tr>
<tr>
<td>Infinium M4 Splice Cassette MM 12 LC</td>
<td>Ortronics</td>
<td>M4LCD12-50ER1A1</td>
</tr>
<tr>
<td>Infinium M4 Splice Cassette SM 12 LC</td>
<td>Ortronics</td>
<td>M4LCD12-09S1A1</td>
</tr>
<tr>
<td>(OFP) Conn Panels for existing OFP and Q Series enclosures:</td>
<td>Ortronics</td>
<td>OFP-LCD12LC</td>
</tr>
<tr>
<td>OFP Conn. Panel 6 duplex LC for MM</td>
<td>Ortronics</td>
<td>EQ01U-CHC</td>
</tr>
<tr>
<td>OFP Conn. Panel 6 duplex LC for SM Legacy (OFP/Q series) Enclosure/Housing:</td>
<td>Ortronics</td>
<td>EQ02U-CHC</td>
</tr>
<tr>
<td>Q Series Fiber Enclosure: 1U, 3 panels</td>
<td>Ortronics</td>
<td>EQ01U-CVC</td>
</tr>
<tr>
<td>Q Series Fiber Enclosure: 2U, 6 panels</td>
<td>Ortronics</td>
<td>OR-205KNF9SA-09</td>
</tr>
<tr>
<td>Q Series Fiber Enclosure: 4U, 12 panels</td>
<td>Ortronics</td>
<td>OR-205KNF9GA-50T</td>
</tr>
<tr>
<td>Splice On Connectors LC SM Splice on Connector</td>
<td>Ortronics</td>
<td></td>
</tr>
<tr>
<td>LC OM3 MM 50/125 Splice on Connector</td>
<td>Ortronics</td>
<td></td>
</tr>
</tbody>
</table>

13.3.3 FIBER OPTIC WIRING JUMPERS

* DTS will get provide the project with fiber jumpers and bill the project per price of
jumpers

<table>
<thead>
<tr>
<th>ITEM</th>
<th>MANUFACTURER</th>
<th>PART NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM LC-LC 3 meter</td>
<td>Ortronics</td>
<td>L3-0101B2JY21003M</td>
</tr>
<tr>
<td>SM LC-LC 10 meter</td>
<td>Ortronics</td>
<td>L3-0101B2JY21010M</td>
</tr>
<tr>
<td>50um LC-LC 3 meter</td>
<td>Ortronics</td>
<td>L3-0101B2DA21003M</td>
</tr>
<tr>
<td>50um LC-LC 10 meter</td>
<td>Ortronics</td>
<td>L3-0101B2DA21010M</td>
</tr>
</tbody>
</table>

*Note: If due to long lead times or supply issues can substitute with Quiktron or another Legrand brand.

13.4 RACKS

13.4.3 RACK AND ASSOCIATED EQUIPMENT

<table>
<thead>
<tr>
<th>ITEM</th>
<th>MANUFACTURER</th>
<th>PART NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>7’X19” MM20 Equipment Rack</td>
<td>Ortronics</td>
<td>OR-MM20716-B</td>
</tr>
<tr>
<td>Front Only Vertical Mgr. w/ Door</td>
<td>Ortronics</td>
<td>OR-MM20VMD712-B</td>
</tr>
<tr>
<td>Wire Management Panel (2U)</td>
<td>Ortronics</td>
<td>OR-60400057</td>
</tr>
<tr>
<td>Wire Management Panel (4U)</td>
<td>Ortronics</td>
<td>OR-MM6HMF4RU</td>
</tr>
</tbody>
</table>

13.5 ELECTRONIC CLASSROOMS

13.5.1 ELECTRONIC CLASSROOM COMPONENTS

<table>
<thead>
<tr>
<th>ITEM</th>
<th>MANUFACTURER</th>
<th>PART NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Double Gang Surface Mount Box</td>
<td>Ortronics</td>
<td>OR-404J4</td>
</tr>
<tr>
<td>Voice Jack (Gray)</td>
<td>Ortronics</td>
<td>OR-63700005-68</td>
</tr>
<tr>
<td>Cat 6 Data Jack (Green)</td>
<td>Ortronics</td>
<td>OR-TJ600-45</td>
</tr>
<tr>
<td>Cat 6A Data Jack (Orange)</td>
<td>Ortronics</td>
<td>OR-TJ6A-43</td>
</tr>
<tr>
<td>F Wall Jack Insert (2 req.)</td>
<td>Ortronics</td>
<td>OR-63700006</td>
</tr>
<tr>
<td>Blank Filler</td>
<td>Ortronics</td>
<td>OR-42100002</td>
</tr>
<tr>
<td>Fog White Voice Buttons (100/pkg))</td>
<td>Ortronics</td>
<td>OR-40309100</td>
</tr>
<tr>
<td>Green Data Buttons (100/pkg.)</td>
<td>Ortronics</td>
<td>OR-40325200</td>
</tr>
<tr>
<td>Video Station Cable RG-6/U</td>
<td>Belden</td>
<td>9116 (non-plenum)</td>
</tr>
<tr>
<td>Video Station Cable RG-6/U</td>
<td>Belden</td>
<td>9116P (plenum)</td>
</tr>
</tbody>
</table>
13.6 HELP AND ELEVATOR TELEPHONES

13.6.1 HELP AND ELEVATOR TELEPHONE EQUIPMENT

<table>
<thead>
<tr>
<th>ITEM</th>
<th>MANUFACTURER</th>
<th>PART NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outside Standalone Mounting Pole Help Phone*</td>
<td>Code Blue</td>
<td>Code Blue I (Custom)</td>
</tr>
<tr>
<td>Elevator Phone*</td>
<td>Gia-Tronics</td>
<td>Gai-Tronics (Custom)</td>
</tr>
<tr>
<td></td>
<td>Ram Tech</td>
<td>R1C-E (Custom)</td>
</tr>
</tbody>
</table>

* Both phones have an optional 2” Palm Button

13.7 CONDUIT

13.7.1 CONDUIT - MULTI-CELL

<table>
<thead>
<tr>
<th>ITEM</th>
<th>MANUFACTURER</th>
<th>PART NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVC Multi-Guard Multi-Cell</td>
<td>Carlon</td>
<td>MXSS4S-020</td>
</tr>
<tr>
<td>PVC M-C M-G Fixed Bends</td>
<td>Carlon</td>
<td>MX_N4S</td>
</tr>
<tr>
<td>PVC M-C M-G Flex Bends</td>
<td>Carlon</td>
<td>MXF_4</td>
</tr>
<tr>
<td>Accessories</td>
<td>Carlon</td>
<td>Per Mfg. Specs.</td>
</tr>
<tr>
<td>EMT Multi-Guard Multi-Cell</td>
<td>Carlon</td>
<td>MESS4S-010</td>
</tr>
<tr>
<td>EMT M-G M-C Fixed Bends</td>
<td>Carlon</td>
<td>ME_FN4S</td>
</tr>
<tr>
<td>EMT M-G M-C Terminators</td>
<td>Carlon</td>
<td>MET14</td>
</tr>
</tbody>
</table>

13.8 NETWORK

13.8.1 WIRELESS LAN EQUIPMENT

<table>
<thead>
<tr>
<th>ITEM</th>
<th>MANUFACTURER</th>
<th>PART NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>As Determined</td>
<td></td>
</tr>
</tbody>
</table>
Access Point Antennas | Cisco As Determined | As Determined**
--- | --- | ---
*Access Points may vary in part number depending on the deployment scenario or as the vendor releases newer hardware.

** External antennas will vary based on the deployment scenario

13.8.2 WIRELESS PATCH CORDS (Legacy)

<table>
<thead>
<tr>
<th>ITEM</th>
<th>MANUFACTURER</th>
<th>PART NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>7ft Cat 6 Reduced Diameter White Patch cord (RDC)</td>
<td>Ortronics</td>
<td>RDC61007-09</td>
</tr>
<tr>
<td>10ft Cat 6 Reduced Diameter White Patch cord (RDC)</td>
<td>Ortronics</td>
<td>RDC61010-09</td>
</tr>
<tr>
<td>15ft Cat 6 Reduced Diameter White Patch cord (RDC)</td>
<td>Ortronics</td>
<td>RDC61015-09</td>
</tr>
</tbody>
</table>

13.9 CATV

13.9.1 CATV CABLE

<table>
<thead>
<tr>
<th>ITEM</th>
<th>MANUFACTURER</th>
<th>PART NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>RG-6/U Drop Cable non-plenum</td>
<td>Belden</td>
<td>9116</td>
</tr>
<tr>
<td>RG-6/U Drop Cable plenum</td>
<td>Belden</td>
<td>9116P</td>
</tr>
<tr>
<td>RG-6/U Riser Cable</td>
<td>Belden</td>
<td>1189A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ITEM</th>
<th>MANUFACTURER</th>
<th>PART NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>F Wall Jack Insert</td>
<td>Ortronics</td>
<td>OR-63700006</td>
</tr>
</tbody>
</table>

13.10 POKE THROUGH, FLOOR BOX, WALL BOX, TABLE BOX EQUIPMENT

<table>
<thead>
<tr>
<th>ITEM</th>
<th>MANUFACTURER</th>
<th>PART NUMBER or Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evolution Floor Box</td>
<td>Wiremold / Legrand</td>
<td>EFB Series</td>
</tr>
<tr>
<td>Evolution Poke Throughs 6”</td>
<td>Wiremold / Legrand</td>
<td>6AT Series</td>
</tr>
<tr>
<td>Evolution Poke Throughs 8”</td>
<td>Wiremold / Legrand</td>
<td>8AT Series</td>
</tr>
</tbody>
</table>
13.11 PATHWAY PRODUCTS (FABRIC INNERDUCT)

<table>
<thead>
<tr>
<th>ITEM</th>
<th>MANUFACTURER</th>
<th>PART NUMBER / Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard 4” 3 Cell fabric innerduct</td>
<td>Maxcell</td>
<td>MXC4003 series</td>
</tr>
<tr>
<td>Plenum 4” 3 Cell fabric innerduct</td>
<td>Maxcell</td>
<td>MXP4003 series</td>
</tr>
<tr>
<td>Riser 4” 3 Cell fabric innerduct</td>
<td>Maxcell</td>
<td>MXR4003 series</td>
</tr>
<tr>
<td>Detectable 4” 3 Cell fabric innerduct</td>
<td>Maxcell</td>
<td>MXD4003 series</td>
</tr>
<tr>
<td>Standard 3” 3 Cell fabric innerduct</td>
<td>Maxcell</td>
<td>MXC3456 series</td>
</tr>
<tr>
<td>Plenum 3” 3 Cell fabric innerduct</td>
<td>Maxcell</td>
<td>MXP3456 series</td>
</tr>
<tr>
<td>Riser 3” 3 Cell fabric innerduct</td>
<td>Maxcell</td>
<td>MXR3456 series</td>
</tr>
<tr>
<td>Detectable 3” 3 Cell fabric innerduct</td>
<td>Maxcell</td>
<td>MXD3456 series</td>
</tr>
</tbody>
</table>

13.12 PATHWAY PRODUCTS (EZ PATH FIRESTOP)

<table>
<thead>
<tr>
<th>ITEM</th>
<th>MANUFACTURER</th>
<th>PART NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>2” Firestop Device</td>
<td>STI</td>
<td>EZD22</td>
</tr>
<tr>
<td>3” Firestop Device</td>
<td>STI</td>
<td>EZD33FWS</td>
</tr>
<tr>
<td>3” Firestop Device Kit (for 4” conduit)</td>
<td>STI</td>
<td>EZDP133CWK</td>
</tr>
<tr>
<td>Description</td>
<td>Brand</td>
<td>Code</td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
<td>-----------</td>
</tr>
<tr>
<td>3” Firestop Device Kit (square mount)</td>
<td>STI</td>
<td>EZDP33FWS</td>
</tr>
<tr>
<td>3” Ganging Accessory (Qty 4) 3” EZ Paths</td>
<td>STI</td>
<td>EZP433W</td>
</tr>
<tr>
<td>6” Firestop Device</td>
<td>STI</td>
<td>EZD44S</td>
</tr>
<tr>
<td>6” Firestop Device Kit (square or round mount)</td>
<td>STI</td>
<td>EZDP44S</td>
</tr>
<tr>
<td>Ganging Accessory (Qty1-5) 6” EZ Paths</td>
<td>STI</td>
<td>EZP544W</td>
</tr>
</tbody>
</table>
14. LOCATION TEMPLATES

ELECTRONIC CLASSROOM OUTLET BOX LOCATIONS

- Standard Outlet
- Ceiling Box for Projector
- Upper Front Wall Box for TV 2'-0" below ceiling 1'-0" 2'-0" 3'-0"
- Floor Box for Podium
- Sidewall Main Termination Box 2'-0" AFF
- Intercom/Phone Box
- ADA Height

TO WIRING CLOSET VIA HALL RACEWAY

AC OUTLET
3/4" CONDUIT
2" CONDUIT
6" MINIMUM RADIUS
TYPICAL BCR/MDF AND FCR/IDF ROOM LAYOUT 10' X 10'

*NOTE: To confirm the location of racks before installation with DTS Telecommunications Infrastructure, contact Blake Stahl at stahlb@ucmail.uc.edu or Dan Drury at drurydy@ucmail.uc.edu

*The door swings/opens outward instead of inward.
1 Rack

INFC04U-M4-E FIBER CABINET

OR-PHD6AU24, CATEGORY 6A, 24 PORT FLAT PATCH PANEL
For Voice Riser

OR-60400057, STANDARD HORIZONTAL MANAGER

48 PORT COPPER SWITCH

SINGLE GANG WORKBOX
DUPLEX 110-20 amp INSTALLED ON BACK WALL, EQUIPMENT SIDE

Tripp Lite SU2200RTXLCD2U

OR-MM20VMD712-B
MM20716-B
RACK A
OR-MM20VMD712-B
3 Racks

NOTE: REPEAT MANAGER, SWITCH, MANAGER
15 GENERAL INFORMATION

15.1 INTRODUCTION

The University of Cincinnati offers students a balance of educational excellence and real-world experience. UC is a public research university with an enrollment of more than 45,000 students and has been named "Among the top tier of the Best National Universities," according to U.S. News & World Report.

15.2 CHARGE

DTS Telecommunications Infrastructure is responsible for planning, developing, managing, and maintaining an effective, efficient, and economical communications network system for the University community. DTS Telecommunications Infrastructure approves and coordinates all voice, data, and video communications systems policies. With the convergence of voice, data, and video technologies, DTS Telecommunications Infrastructure is committed to providing students, faculty, and staff with a seamless communications services network.

Communications systems are a tool for improving facilitating the education process and improving employee productivity reducing operating costs. In its role as a system integrator of networks, DTS Telecommunications Infrastructure supports the UC’s academic mission and role as a thought leader among urban, public research universities.

15.3 FUTURE

The University of Cincinnati will continue to grow. DTS Telecommunications Infrastructure will continue to support the ever-increasing demands for more advanced technological capability and greater access to information databases, video conferencing, online learning, high-speed data networks, digital messaging, voice processing,
and other communications requirements of the University.

DTS Telecommunications Infrastructure will continue to maintain a sophisticated and comprehensive communications infrastructure through which the University community can share access to enterprise technology resources and therefore minimize expensive and unnecessary duplication. DTS Telecommunications Infrastructure will develop and expand network systems to enhance and facilitate the growth of the infrastructure by providing leadership and coordination for the planning, development, acquisition, and utilization of new technologies.

15.4 CONTACTS

A list of university contacts and telephone numbers is provided for your convenience

DIGITAL TECHNOLOGIES SOLUTIONS (DTS)
Telecommunications Infrastructure
Associate Director Dan Drury
Phone: 513-556-1234
Email: drurydy@ucmail.uc.edu

DIGITAL TECHNOLOGIES SOLUTIONS (DTS)
Telecommunications Infrastructure
IT Infrastructure Design Consultant Blake Stahl RCDD
Phone: 513-556-1638
Email: stahlbs@ucmail.uc.edu

DIGITAL TECHNOLOGIES SOLUTIONS (DTS)
Telecommunications Infrastructure
IT Infrastructure Design Consultant Matt Vance TECH
Phone: 513-556-1680
Email: vancemw@ucmail.uc.edu
DIGITAL TECHNOLOGIES SOLUTIONS(DTS)
Telecommunications Infrastructure
IT Infrastructure Design Consultant Jamie Schira
Phone: 513-556-4445
Email: schirajt@ucmail.uc.edu

DIGITAL TECHNOLOGIES SOLUTIONS(DTS)
Telecommunications Infrastructure
Solutions Design and Supply Manager Jason Mayer TECH
Phone: 513-556-9572
Email: mayerjm@ucmail.uc.edu

UC DEPARTMENTS of PLANNING+DESIGN+CONSTRUCTION(PDC), REAL ESTATE, and COMMUNITY DEVELOPMENT
University Hall, 6th Floor
PO BOX 210186
Cincinnati, OH 45221-0186
University Architect: 513-556-1933
Director of Planning: 513-556-5200
Director of Real Estate: 513-556-2861
Director of Community Development: 513-556-5948
Director of Project Management: 513-558-8999
Director of Renovations: 513-556-5200

UC FACILITIES MANAGEMENT
UNIVERSITY HALL
CINCINNATI, OH 45219-0080
Maintenance West Campus: 513-556-1493
Maintenance East Campus: 513-558-2500
Utilities and Technical Support: 513-556-4828
UC PUBLIC SAFETY
51 W. CORRY BLVD.
CINCINNATI, OH 45219-4900
Information: 513-556-4900
Fire Alarm Service: 513-556-1111

UC ENVIRONMENTAL HEALTH AND SAFETY OPERATIONS
51 W. CORRY BLVD.
CINCINNATI, OH 45219-0215
Information: 513-556-4968

MAPS
Detailed maps and floor plans for the University can be obtained from the UC Department of PLANNING+DESIGN+CONSTRUCTION. Refer any questions specifically not addressed in this document to the Office of DTS Telecommunications Infrastructure.