Marginal Cost

The marginal cost is the additional cost added by increasing the quantity. This is also known as the additional cost "at the margin."

$$
\begin{gathered}
\text { Marginal Cost }=M C=C^{\prime}(q) \\
\text { Marginal Cost } \approx C(q+1)-\stackrel{C}{C}(q)
\end{gathered}
$$

Marginal Revenue

The marginal revenue is the additional revenue added by increasing the quantity. This is also known as the additional revenue "at the margin."

$$
\begin{gathered}
\text { Marginal Revenue }=M R=R^{\prime}(q) \\
\text { Marginal Revenue } \approx R(q+1)-R(q)
\end{gathered}
$$

Maximize/Minimize Profit using Marginal Cost and Revenue

When $M C=M R$ or $C^{\prime}(q)=R^{\prime}(q)$ then the profit is:

- Maximized given that $R(q)>C(q)$
- Minimized given that $C(q)>R(q)$

Maximize/Minimize Profit using Marginal Profit

Recall that, Profit $=$ Revenue - Cost. Therefore,

$$
\begin{array}{cl}
\text { Profit }=\text { Revenue }- \text { Cost } & \\
& P=R-C \\
M P=M R-M C & \text { differentiate both sides } \\
M P=0 & \text { profit is maximized when } M R=M C
\end{array}
$$

Therefore, profit is maximized when marginal cost equals marginal revenue which is the same as saying when marginal profit equals zero.

$$
C^{\prime}(q)=R^{\prime}(q) \quad \text { or } \quad P^{\prime}(q)=0
$$

