A short Course in Energy Conversion Session 6

Jim Rauf

OLLI Fall 2019

•Electrical Energy Atoms Electrons Electric fields Electric current Magnetism Generators Motors Photovoltaic effect Batteries Fuel cells Thermoelectric effect

Atomic Theory

- The atom is composed of a nucleus at its center and electrons that "orbit" the nucleus
- Nucleus is composed of protons and neutrons
- Protons have a *positive* charge of 1.6021765×10⁻¹⁹ coulombs
- Protons have a mass of 1.6726×10⁻²⁷ kg (1,836 times that of the electron)
- Neutrons have *no* electrical charge
- Neutrons have a mass of 1.6929×10⁻²⁷ kg (1,839 times that of the electron)

- Electrons have a *negative* charge equal to 1.6021765 × 10⁻¹⁹ coulombs
- Electron has a mass of 9.11×10⁻³¹ kg
- Electron discovered by Joseph John
 Thomson in 1897

Atomic Theory

- Atoms are **small**
- The diameter of an atom ranges from about 0.1 to 0.5 nanometers or 1 × 10⁻¹⁰ m to 5 × 10⁻¹⁰ m
- Electrons "orbit" the nucleus
- Electron charge (-) balances proton charge(+) to make atoms neutral electrically
- "Sharing" of electrons between/among atoms is basis of chemistry

Atomic Theory

- Electrical conductivity in metals is a result of the movement of electrically charged particles
- The atoms of metal elements are characterized by the presence of valence electrons, which are electrons in the outer shell of an atom that are free to move about
- It is these 'free electrons' that allow metals to conduct an electric current

Insulators have few 'free electrons"

Electricity

- **Electricity** is the physical phenomena associated with the presence and flow of electric charges
- Electric charges produce electromagnetic fields which act on other charges
- Electric current is movement or flow of electrically charged particles
- Current is measured in amperes-
- Amount of charge passing a point in an electric circuit per unit time-

1 coulomb per second

or 6.241 × 10¹⁸ electrons/second

• **Conductor** is a material which contains movable electric charges , typically electrons as in metallic conductors

Typical Path of an Electron

A high current results from many charge carriers passing through a given cross section of wire on a circuit.

 Current does not have to do with how far charges move in a second but rather with how many charges pass through a cross section of wire on a circuit

Electric Field

- Electric field is a simple type of *electromagnetic* field produced by an electric charge when it is not moving
- Electric fields produce a force on other charges in their vicinity

$$F_g = \frac{Gm_1m_2}{r^2}$$

- Moving charges produce a magnetic field
- Electric potential is the capacity of an electric field to do work on an electric charge
- Potential is measured in **volts**-
- Defined as the *difference in electric potential* across a wire when a current of one ampere dissipates one watt of power

Volt=Watt/Amp=P/I

Electric Currents

- **Direct current (DC)** is the unidirectional flow of electric charge
- Direct current is produced by sources such as batteries, thermocouples, solar cells
- Direct current may flow in a conductor (wire) but can also flow through semiconductors, insulators, or even through a vacuum as in electron or ion beams
- The electric charge flows in a constant direction

- Alternating current (AC) is the movement of electric charge periodically reverses direction.
- Audio and radio signals carried on electrical wires are examples of alternating current
- The usual waveform of AC circuit is a sine wave

Electricity-Relationships

- •Volts-electric potential
- •Amps-electric current
- •Watts-power
- •Ohms-resistance

Magnetic Fields

- Magnetic field is a mathematical description of the magnetic influence of electric currents and magnetic materials
- The magnetic field at any given point is specified by both a *direction* and a *magnitude*
- Magnetic fields are produced by moving electric charges
- Rotating magnetic fields are utilized in both electric motors and generators

• Direction of magnetic field created by current in a wire

Direction of force in magnetic field created by current

- A charged particle (current) moving in a B-field experiences a *sideways* force that is proportional to the strength of the magnetic field, the component of the velocity that is perpendicular to the magnetic field and the charge of the particle (current)
- This force is known as the Lorentz force, and is given by

• The Lorentz force is always perpendicular to both the velocity of the particle (current) and the magnetic field that created it

Direction of force on wire in magnetic field

This is basis for electrical generators and motors

- Electric generator is a device that converts mechanical energy to electrical energy
- A generator forces electric charge (carried by electrons) to flow through an external electrical circuit
- The mechanical energy may be supplied by various sources:
 - Heat engines
 - Most common
 - Steam turbines
 - Gas turbines
 - IC engines
 - Water flowing thru a turbine
 - Hydroelectric
 - Wind turbine

- Electric motor is a device that converts electrical energy into mechanical energy
- Motors and generators have many similarities
 - Utilize Lorentz force
- Many motors can be mechanically driven to generate electricity, and frequently make acceptable generators

- In the years of 1831–1832, Michael Faraday discovered the operating principle of electromagnetic generators, Faraday's Law
- The principle is that an electromotive force is generated in an electrical conductor that encircles a varying magnetic flux
- He also built the first electromagnetic generator, called the Faraday disk, using a copper disk rotating between the poles of a horseshoe magnet
- It produced a small DC voltagemechanical to electrical energy conversion

- The dynamo was the first electrical generator capable of delivering power for industry
- The dynamo uses electromagnetic principles to convert mechanical rotation into pulsed DC through the use of a commutator
- The first dynamo was built by Hippolyte Pixxii in 1832
- A dynamo machine consists of a stationary structure, which provides a constant magnetic field, and a set of rotating windings which turn within that field electromagnets, which are usually called field coils

- On small machines the constant magnetic field may be provided by one or more permanent magnets
- Larger machines have the constant magnetic field provided by one or more field coils

- Thomas Edison's Pearl Street station (1892) consisted of six huge dynamos—the largest ever built—" Jumbo"
- Each Jumbo weighed about 27 tons and had a 10-foot armature shaft and an output of 100 kilowatts
- Each dynamo was driven by a steam engine , which received steam from boilers located in another part of the plant
- The Pearl Street plant was designed to run up to 1,400 lamps (light bulbs inserted into fixtures) continuously, and served an area of about one square mile

Electricity

- 1884 Nikola Tesla invented the electric alternator, an electric generator that produces alternating
- current (AC)
 Until this time electricity had been generated using direct current (DC)
- AC electrical systems are better for sending electricity over long distances
- The rotating magnetic field induces an AC voltage in the stator windings
- Often there are three sets of stator windings, physically offset so that the rotating magnetic field produces a three phase current

- A transformer is a device that transfers AC electrical energy from one circuit to another through inductance
- It is used to change AC voltages
- A varying current in the first or *primary* winding creates a varying magnetic field or flux in the transformer's core which creates a varying magnetic field through the *secondary* winding
- This varying magnetic field induces a varying EMF, or voltage, in the secondary winding
- Current will flow in the secondary winding to a load

Photovoltaic Effect

- The **photovoltaic effect** is the basic physical process through which a PV cell converts sunlight into electricity
- Sunlight is composed of photons-packets of solar energy
- These photons contain different amounts of energy that correspond to the different wavelengths of the solar spectrum
- When photons strike a PV cell, they may be reflected or absorbed, or they may pass right through
- The absorbed photons generate electricity

- The energy of a photon is transferred to an electron in an atom of the semiconductor device
- With its newfound energy, the electron is able to escape from its normal position associated with a single atom in the semiconductor to become part of the current in an electrical circuit
- Special electrical properties of the PV cell a built-in electric field provide the voltage needed to drive the current through an external load

Photovoltaic Effect

- The energy required to move an electron from the semiconductor atom to a conducting state is a discrete amount
- The energy of a photon of light is determined by its wavelength, with shorter wavelength photons having higher energy than those with longer wavelengths
- A photon with wavelength 1,100 nanometer (nm), corresponding to short wave infra-red light has just enough energy to promote an electron in a *silicon* atom
- Longer wavelength photons have insufficient energy to promote the electron
- They pass straight through the PV cell or are absorbed as heat

Energy Spectrum of Sunlight

- Shorter wavelength photons have more energy than is required to promote the electron
- The excess energy is lost as heat
- The *efficiency upper limit* from a single junction of p-n semiconductor is around 31%
- A PV material made up of multiple layers, tuned to a different wavelength yield up to 44% efficiency in the lab

Photovoltaic Effect

- The heart of a PV cell is the interface between two different types of semiconductor (called p-type and ntype)
- When a light photon with **sufficient** energy hits an atom in this region, it throws out an electron
- The electron, now free to move, travels through the n-type semiconductor to metal contacts on the surface
- The hole left by the absence of the electron travels in the opposite direction, through the p-type semiconductor
- Once at the metal contact, the electron flows around an electrical circuit, doing work in the process, to meet up with a hole at the rear contact

- A battery is a device that *converts* chemical energy directly to electrical energy
- When a load completes the circuit between the two terminals, the battery produces electricity through a series of electromagnetic reactions between the anode, cathode and electrolyte
- The anode experiences an oxidation reaction in which two or more ions (electrically charged atoms or molecules) from the electrolyte combine with the anode, producing a compound and releasing one or more electrons

- At the same time, the cathode goes through a reduction reaction in which the cathode substance, ions and free electrons also combine to form compounds
- The reaction in the anode creates electrons, and the reaction in the cathode absorbs them
- The net product is electricity
- The battery will continue to produce electricity until one or both of the electrodes run out of the substance necessary for the reactions to occur

Common Battery Chemistries

- The *zinc-carbon* chemistry is common in many inexpensive AAA, AA, C and D dry cell batteries
- The anode is zinc, the cathode is manganese dioxide, and the electrolyte is ammonium chloride or zinc chloride
- Alkaline battery is also common in AA, C and D dry cell batteries
- The cathode is composed of a manganese dioxide mixture, while the anode is a zinc powder
- It gets its name from the potassium hydroxide electrolyte, which is an alkaline substance

- Lithium chemistry is often used in rechargeable Lithium-ion batteries high-performance devices, such as cell phones, digital cameras and even electric cars
- A variety of substances are used in lithium batteries, but a common combination is a lithium cobalt oxide cathode and a carbon anode
- *Lead-acid battery* chemistry is used in a typical car battery
- The electrodes are usually made of lead dioxide and metallic lead, while the electrolyte is a sulfuric acid solution

- Dry cell batteries are the most widely used type of primary cell
- Every dry primary battery has two structures called *electrodes*
- Each electrode consists of a different kind of chemically active material
- An electrolyte between the electrodes causes one of them, called an *anode*, to become negatively charged and the other, called a *cathode*, to become positively charged
- The electrolyte helps promote the chemical reactions that occur at the electrodes

- Lead-Acid Storage Battery consists of a plastic or hardrubber container that holds three or six cells, each of which has two sets of latticelike electrodes or plates
- The frames of these structures, called *grids*, are made of a **lead**antimony alloy
- The meshes (open spaces) of the negative electrode are filled with a mass of pure lead in spongy form

- The meshes of the positive electrode contain lead dioxide, a compound of lead and oxygen
- An electrolyte of sulfuric acid and water surrounds the electrodes
- Output is ~2 volts per cell

- During the discharge process, chemical reactions take place between the electrode materials and the electrolyte
- At the negative electrode, atoms of pure lead react with negative sulfate ions of the electrolyte
- The negative sulfate ions, along with positive hydrogen ions, form when sulfuric acid dissolves in water
- As the lead atoms combine with the sulfate ions, each lead atom loses two electrons and becomes a molecule of lead sulfate
- The electrons lost by the lead atoms flow from the negative electrode to the positive electrode through a device using the electric current

- At the positive electrode, they are captured by molecules of lead dioxide, which in turn combine with the hydrogen and sulfate ions of the electrolyte
- This reaction produces lead sulfate and water
- The current-producing process decreases and dilutes the electrolyte of sulfuric acid by using up sulfate ions and by adding water molecules to the solution
- The battery becomes discharged when so little sulfuric acid remains that the necessary chemical reactions can no longer occur

- A lead-acid battery can be recharged by forcing electrons through the battery in a direction opposite to that of the discharge process.
- This action reverses the chemical reactions that occur at the electrodes when a battery discharges
- The reversed reactions of the charging process restore the electrode materials to their original form
- They also increase the amount of sulfuric acid in the electrolyte to a satisfactory level

- Car batteries are recharged:
- Chemical energy converted to thermal energy-- IC engine
- Thermal energy converted to mechanical energy—IC engine
- Mechanical energy converted to electrical--alternator

- The voltage developed across a cell's terminals depends on the energy release of the chemical reactions of its electrodes and electrolyte
- Alkaline and zinc carbon cells have different chemistries but approximately the same emf of 1.5 volts
- Ni Cd and NiMH cells have different chemistries, but approximately the same emf of 1.2 volts
- On the other hand the high electrochemical potential changes in the reactions of lithium compounds give lithium cells emfs of 3 volts or more

Туре	Voltage	Mj/Kg
NiCd	1.2	0.14
Lead Acid	2.1	0.14
NiMH	1.2	0.36
NiZn	1.6	0.36
Li Ion	3.6	0.46
	Gasoline `44 Mj/kg	

Fuel Cells

- A fuel cell is a device that converts the chemical energy from a fuel into electricity through a chemical reaction with oxygen or another oxidizing agent
- Welsh Physicist William Grove developed the first crude fuel cells in 1839
- Hydrogen is the most common fuel, but hydrocarbons (natural gas and alcohols like methanol) are sometimes used
- Fuel cells are different from batteries in that they require a constant source of fuel and oxygen to run

- The first practical use of fuel cells was in NASA space programs to generate power for probes, satellites and space capsules
- There are many types of fuel cells, but they all consist of an *anode* (negative side), a *cathode* (positive side) and an *electrolyte* that allows charges to move between the two sides of the fuel cell
- Electrons are drawn from the anode to the cathode through an external circuit, producing DC electricity

Fuel Cells

- Fuel cells are made up of three adjacent segments:
- The anode, the electrolyte, and the cathode
- Two chemical reactions occur at the interfaces of the three different segments
- The net result of the two reactions is that fuel is consumed, water or carbon dioxide is created, and an electric current is created

- At the anode a *catalyst* oxidizes the fuel, usually
 hydrogen, turning the fuel into a positively charged ion and a negatively charged electron
- The electrolyte is a substance specifically designed so ions can pass through it, but the electrons cannot
- The freed electrons travel through a wire creating the electric current
- The ions travel through the electrolyte to the cathode
- Once reaching the cathode, the ions are reunited with the electrons and the two react with a third chemical, usually oxygen, to create water or carbon dioxide

Fuel Cells

- Fuel cells can be thought of as batteries with a continuous supply of chemicals
- Fuel cells are classified by the type of electrolyte they use.
- Individual fuel cells produce very small amounts of electricity, about 0.7 volts, so cells are "*stacked*" to increase the voltage and current output
- In addition to electricity, fuel cells produce water, heat and, depending on the fuel source, very small amounts of nitrogen dioxide and other emissions.
- The energy efficiency of a fuel cell is generally between 40-60%

Thermoelectric Effect

- A **thermocouple** is a device used to *convert* heat energy into a voltage output
- It consists of two different types of metal joined at a junction
- As the junction is heated, the electrons in one of the metals gain enough energy to become free electrons
- The free electrons will then migrate across the junction and into the other metal
- The displacement of electrons produces a small voltage across the terminals of the thermocouple
- Materials used in thermocouples include: iron and constantan; copper and constantan; antimony and bismuth; and chromel and alumel

Thermocouples are normally used to measure temperature The voltage produced causes a current to flow through a meter, which is calibrated to indicate temperature

- Radiation
- Light
- Incandescent light
- Fluorescent light
- LED light
- Radioactivity
- Nuclear Fission
- Nuclear Fusion