3rd Year Planner Group #2: Spring Grove Avenue,

Another Great Street?

Niehoff Studio

3rd Year, B of Urban Planning

Final Assignment

December 15, 2008

Brad Kearns
Joe Williging
Dustin Clark
General Questions

Why did you select this project?

Spring Grove Avenue, or SGA, holds much potential. As a radial artery, SGA connects much of the center of Cincinnati. The street hit many major nodes in Cincinnati as it travels from the north most point of downtown Cincinnati, past Union Terminal, under the Western Hills Viaduct, through Camp Washington, past Spring Grove Cemetery, and outside of Incorporated Cincinnati. SGA in Camp Washington, or CW, is home to the most established industrial area in all of Cincinnati. These traits made this portion of the 3rd year planning project very interesting to our group.

What were you trying to accomplish with your plan?

First and foremost, the establishment of a sense of place for SGA’s section that lays through Camp Washington. Our group began by taking a through walk-through survey of the SGA section in CW. We then generated three alternative plans to implement on SGA: The Streetscape Redevelopment Plan, The Art Avenue, and The Eco-Friendly Avenue. As our group presented, the plans could be implemented separately, or through phasing—either in full, or by utilizing the most preferred sections of separate plans.

What existing plans or ideas from stakeholders (e.g. recent city plans or plans as described by our city visitors) were you responding to and in what way?

Our group made special notice of the KAO area, and Site 2—as requested by the city-planning department. We also meet with the CW community leader and headed his
ideas to enhance gateways onto SGA from particular streets. We also identified particular weaknesses and opportunities that we could plan to intensify.

What precedents did you learn from or use in your plan? (be specific with references)

We had many case studies. Our group did not completely apply any case study; rather we selectively picked parts of our case studies we felt would be applicable to our study area and our plans. The full list of case studies is attached to the last page of this document.

What aspects of your plan did the engineering students contribute to?

The engineers had helped us determine the range of lane and median widths. Also, we consulted the engineers on weather we could install medians in some areas, and at what point we should stop the median before each specific intersection.

How do you think that your design was successful in illustrating your intent? How not?

As anyone could be told, the concepts and diagrams could have been further enhanced, but we, and the critiquers, believe the ideas were illustrated quite extensively.

We found our boards were graphically successful in the opinions of the critiquing crew, our opinions, and other peers’ opinions as: they had good balance, were easily
readable, featured interesting graphics and supporting text, and were arranged in good order of ideas.

Our weak points included a few underdeveloped ideas, and this mis-congruency of the text size on the three boards. However, we must elaborate: the final board did require more text to elaborate the more outlandish concepts and diagrams for those who did not see or hear our presentation for the Eco-Friendly Avenue that we proposed.
Board 1: “The 1st Board”

Gives overview of the existing conditions (towards the top of the board) and Alternative #1, which is a streetscape, enhancement-based proposal.

Existing Conditions: To enhance SG we must first have a clear understanding.

--Fist of all we have two section views to get an overall understanding of the width and street/building height ratio. We chose two sections along the roadway that give a clear understanding of the condition. The road and sidewalk widths stay relatively the same, (70ft Rd, 10 Ft Sidewalks). The one section is the typical SG roadway and the other shows the small section of roadway to have tree buffers. Most of the roadway is un-landscaped. The road and sidewalk width are large leaving us with many opportunities.

--Next we have a diagram representing the corridor, as it exists. The corridor is made up of many unique features that should be taken into account and enhanced upon. We looked for divisions and districts that exist and could be reinforced. (The legend on the diagram explains the elements relatively well; In addition we added pictures to the left of the diagram coinciding with the legend to give further explanation)
Alternative #1: SG avenue as a Parkway, Streetscape Enhancement

--This is the “Mild” alternative, or most basic and maybe most feasible. Many of the elements seen in this, “street enhancement” can also be incorporated in the other alternatives.

--Context diagram, this is both relevant for the existing analysis and the first alternative. It shows the proximity to the surrounding region and some of the major constituencies on the corridor. It also helps explain the intersection we selected for our improvements. These intersections can be the most important areas or something like a starting point but the improvements should be consistent throughout. These selected intersections can act as gateways onto the corridor and should include signage.

-- This takes us into the enhancements plans. We divided them into tree sections, Existing, Implementations, After. As I stated before the streets were chosen based on their connection to the surrounding region. We chose Baits and Marshall because of its connection to uptown and Central Avenue. We chose the Hopple connection for obvious reasons (75 and uptown and its East West Connection). The last area we chose was in front of the KAO Company. KAO is a major constituency along the corridor and holds a great stake in the roads condition. They also showed interest in its enhancement. The last perspective at the bottom of the board shows one of the major gateways that should be improved. This diagram doesn’t show Existing or Implementations, just the After
product. We also have a diagram to shows where the selected locations lie along the corridor.

Implementations:

- Basic Tree/ Landscape improvements leading to and from the corridor.
- Signage as one enters SG Avenue, which is important to create a sense of place.
- A bike path along the roadway.
- Tree buffers bike path from roadway in some areas.
- Other areas have a tree buffered center median.
- Trees along sidewalks.
- Block view of large parking lots abutting roadway with wood fencing or landscaping.
- Limit Curb cuts, which as it exists there are many large and continuous cuts.
- Parking lots also seem to merge with each other, tree buffers and small retaining walls are proposed.
- At the Marshal and SG intersection, a small parcel of green space is proposed where nothing exists today. This can incorporate landscaping and maybe a focal point such as a sculpture.
- Brick crosswalks are proposed to help define the gateway areas. Each area has a circle drawn on the diagrams to show the avenues focal point in each plan.
-The Gateway at the bottle of the board shows how the trees should lead into the corridor and adequate signage should be added. It also shows that the bridge could be an attractive attribute entering the corridor.
Board 2: “The Art Avenue”

History of Camp Washington

In the History diagram we can see how the primary purposes in Camp Washington have changed. It started as an Army camp during the Mexican-American War. Then it became the center of the meat packing industry in Cincinnati. Next it transitioned into an industrial manufacturing center for the region. Today the future of the area is unknown.

Collaboration Diagram

The success of the Art Avenue would require that not only that the stakeholders in Camp Washington to get involved, but also that other players in the region play some part. The use of local students from differing colleges and universities to create art pieces could spark a friendly competition to create high-quality work.

Plan Diagram

The plan for The Art Avenue centers of a combination of different elements to highlight the unique districts in the area. The purple objects represent large buildings that can have murals painted on their exteriors. The yellow objects are buildings that
can have special lighting to highlight unique and special architectural features. The orange circles are intersections that will have sculptures to represent the unique history of the area or of businesses that currently reside there.

Image Collage Diagrams

1.) This image shows the Ryerson building under the proposed changes. The addition of trees as well as a mural depicting what the company produces (on the bottom) and a cartoonish example of steelworker (on the top) enhance the building as well as the neighborhood. 2.) This image shows the old Kahn’s factory with a new tenant in Greaters’ Ice Cream. Transforming the gatehouse into an ice cream cone would make an instant impression on passing drivers. 3.) This picture shows how the use of special lighting can transform a unique building into a landmark in nighttime. 4.) This image shows how historically specific sculptures can provide insight on this areas unique past. The cows in this image are linked to the meatpacking industry that once thrived in this area. 5.) The image of the KAO building shows the streetscape improvements along with the addition of an art piece that highlights what the company is about. Cars driving by will understand what the company is about without having to leave their car.
The Eco-Friendly Avenue

This final board outlines our 3rd alternative plan, to turn Spring Grove Avenue in Camp Washington into the Eco-Friendly Avenue. To do so, we will take advantage of natural energy that is currently unharnessed in Camp Washington. The first diagram is composed of images of the underutilized inputs in the first column (the sun, rain, wind, and car traffic), the technologies that can produce renewable energy by use of these inputs (solar panels, rain water filtration, and the energy generating road surface), and the
last column is descriptive text. While the text is quite lengthy, it does clearly tell why the energy inputs and technologies to the right would be applicable to the SGA corridor in CW to anyone who passes by the board, or whom missed the presentation. We feel all the text was necessary in this situation.

How It All Fits Together

The next diagram is the “How It All Fits Together” diagram, or the puzzle diagram. The diagram resembles puzzle pieces hooked together as a symbolic idea of piecing all of the technologies to the SGA corridor. The text is again lengthy to the right of the diagram, and again, we believe the text was necessary to elaborate the use of these technologies in our given context to any by-passer. The various renewable inputs, and technologies to refine the inputs that appear in the first diagram are shown on a conceptual formation of SGA, including the massive void to the west of the buildings, the large industrial warehouses, and the planted street trees.

The Battery of Cincinnati

The next diagram illustrates our concept of CW being transformed into the battery of Cincinnati. With the piecing of the various technologies, as described in the earlier board, CW could generate quite a large amount of clean, renewable energy. That could potentially take CW’s large industrial buildings and companies off the energy grid, and possibly even return energy to the grid. All of the energy produced would be completely clean and renewable, improving the Cincinnati air quality, and the environment directly diminished by the industry on SGA. The city of Cincinnati could utilize this power, not only as a “free” and clean energy source, but also to become a city famous for this
portion of SGA and renewable energy such a large scale not yet seen so concentrated in an urban American environment.

The Plan

“The Plan” diagram includes a conceptual diagrammatical plotting of the technologies tot our study area, as well as three photo-shopped images to illustrate our proposed green enhancements. The background location diagram plots all of our technologies we presented, the amount of times the technology could be realized in the corridor, and the location of these energies in this easy to read map. The three images to the left are intended to look as if they are real polaride images of the area, but with outer glows on the specific uses of the plan and technology over the image. The viewing location is “written” on the bottom of the bounding box.

Urban Renewable Energy

The final diagram rests inside of a bounding box at the bottom left corner of the board—purposely. The diagram is basically an expansion of the two less famous renewable energy technologies: the Energy Generating Road Surface, and the Archimedes’s Wind Turbine. The lack of knowledge, even by our group before our research, is the reason for special attention, exploded diagrams, and lengthy text. Though the first is only a patent, and the later is only a recent technology seen in few cities, the opportunities for these technologies are extensive in CW. Under SGA, the Energy Generating Road Surface (if feasible) could utilize the millions of cars that travel on the road in CW. And the Archimedes’s Wind Turbine is an existent technology that would perform quite successful by lining the building tops of the grand industrial buildings in CW on SGA.
Works Cited

Camp Washington Community Page-
http://outside.in/Camp_Washington_Cincinnati_OH

Camp Washington Mural Article-

Real Estate Identification Site- http://www.zillow.com/

HPIG Sustainable Design PDF- http://www.designtrust.org/pubs/05_HPIG.pdf

NYC Sustainable Design-

APA Great Places: Neighborhoods: Mariemont
http://www.planning.org/greatplaces/neighborhoods/2008/mariemont.htm

APA Great Places: Great Streets Definition-
http://www.planning.org/greatplaces/streets/characteristics.htm#1

Columbus, Indiana: Public Art Ideas- http://columbus.in.us/listings/index.cfm?catId=336

MRSC Streetscapes Ideas- http://www.mrsc.org/Subjects/Transpo/streetscape.aspx#green
Pittsburg Public Art Article-

EPA Brownfield Definition- http://epa.gov/brownfields/about.htm

Breathable Concrete-
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TWF-4NK4G3N-1&_user=10&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_version=1&_urlVersion=0&_userid=10&md5=4780b323f46718c064ae26592cda25d1

Urban Wildlife Resources- http://users.erols.com/urbanwildlife/

Urban Wildlife Sanctuary Program-
http://www.hsus.org/wildlife/wildlife_and_habitat_protection_programs/urban_wildlife_sanctuary_program.html

Urban Birds- http://www.birds.cornell.edu/celebration/resources-for-celebrating

Aerotecture diagram- www.zrotor.com