UC Research Demonstrates Why Going Green Is Good Chemistry

Shaken, not stirred, is the essence of new research that’s showing promise in creating the chemical reactions necessary for industries such as pharmaceutical companies, but eliminating the resulting waste from traditional methods.

James Mack, a University of Cincinnati associate professor of chemistry, will present this research into greener chemistry on

April 9, at the annual meeting of the American Chemical Society in New Orleans.

Instead of using solutions to create chemical reactions needed to manufacture products such as detergents, plastics and pharmaceuticals, Mack is using a physical catalyst  – high-speed ball-milling – to force chemicals to come together to create these reactions. The mechanochemistry not only eliminates waste, but also is showing more success than liquids at forcing chemical reactions.

Traditional methods – dating back thousands of years – involve using solutions to speed up chemical reactions that are used to make products that we use every day. However, the leftover waste or solvents can often be a volatile compound, explains Mack.

Disposal and recycling is also becoming a growing and more costly challenge for companies as they follow increasing federal regulations to protect the environment. “The solvents comprise the large majority of chemicals that are handled, but the solvent doesn’t do anything but serve as a mixing vehicle. For example, for every gram of pharmaceutical drug that is generated, 15 to 20 kilograms of solvent waste is generated in that process,” Mack says.

“Mechanochemistry can develop new reactions that we haven’t seen before, saving on waste and developing new science,” Mack says.

Mack also will report on how he has used a metal reactor vial to create chemical reactions, allowing recovery of the catalyst used to make the reaction, which usually can’t be achieved by using solutions. He also is exploring efforts at using natural chiral agents – agents that are non-superimposable, mirror images of each other – to successfully mix chemicals and eliminate waste such as oil.

Mack’s research was supported by a $367,835 grant from the National Science Foundation that was awarded in 2011 and funded through 2014. His research received a highly competitive, $550,000 NSF CAREER Award in 2006. The CAREER Award is the NSF’s most prestigious award in support of junior faculty who exemplify the role of teacher-scholars through outstanding research, excellent education and the integration of education and research within the context of the mission of their organizations.

With more than 164,000 members, the nonprofit

American Chemical Society

is the world’s largest scientific society and one of the world’s leading sources of authoritative scientific information.

Related Stories

1

What is Film and Media Studies?

October 4, 2022

Behind everyone’s favorite movie, TV show or YouTube channel lies an entire process of planning, producing, and promoting all the media we consume. Film, television, and screen media have grown increasingly ubiquitous and complex in the 21st century, making it essential that we are able to understand, control, and create media in the workplace and in our professional, civic and private lives. Film and media studies is an interdisciplinary bachelor of arts program within the School of Communication, Film, and Media Studies (SCFMS), a new academic unit in the College of Arts and Sciences at the University of Cincinnati. Students in the film and media studies program learn ways to comprehend, analyze, and participate in both local and global film and media cultures and industries. They also study both traditional and new media technologies from film to video games.

2

UC alum wins Samvid Scholarship

October 3, 2022

Samvid Scholarship recognizes Chinmay Bakshi, A&S ’21, as future changemaker after an extraordinary undergraduate career that focused on both research and public service

Debug Query for this