Stay-At-Home Microbes: Berkeley-Cincinnati Study Finds Micro-Organisms More Complicated Than We Thought

When it comes to plant life and animal life, a species usually shows genetic differences in different parts of the world.  For the tiny form of life known as micro-organisms, the opposite has been considered to be true – they don’t tend to differ by geographic location.  That long-held view has been convincingly overturned in a study by University of Cincinnati and University of California, Berkeley, researchers focusing on a form of life that flourishes in extremely hot conditions.

The study is published July 24 by the journal

Science

in its rapid online service,

Science Express

. The online article will be followed by an article in the coming weeks in 

Science

.

Co-authors Dennis Grogan of the University of Cincinnati and Rachael J. Whitaker and John W. Taylor of Berkeley provide the most comprehensive proof to date that at least one species of micro-organism in different parts of the world does have genetic differences, if you look close enough. Whitaker, the principal author, focused on the archaeon Sulfolobus, found in acidic hot springs and flourishing at temperatures from 140-180 degrees Fahrenheit. She drew the vast majority of samples for her analysis from archives developed and stored at the University of Cincinnati Department of Biological Sciences under the leadership of Grogan. Whitaker analyzed the DNA of some 78 cultures from the United States, Eastern Russia and Iceland.

Of those samples, more than 54 came from the University of Cincinnati collection that Grogan has built with the help of National Science Foundation funding as well as the help of undergraduate and graduate students. Micro-organisms From Extreme Environments, a summer course taught by Grogan, involves UC students in laboratory work that “isolates” the archaea samples from hot springs samples and preserves the live cultures in vials stored in freezers. Culturing archaea can be difficult because of the extreme conditions they enjoy.

Dennis Grogan in the lab.

Dennis Grogan in the lab.

It was not until the 1970s that Archaea were discovered and classified as one of three domains of life. The other two are bacteria and eukaryota (plants, animals, fungi and protists).

Many archaea survive in “extreme” environments that are “normal” for them, but for other life forms would be lethal or at least injurious. Sulfolobus, for example, flourishes in acidic hot springs – including those found bubbling at Yellowstone. Also known as “extremophiles,” these microscopic critters not only thrive in temperatures ranging from 65 to 85 degrees Celsius, but also love acidic conditions with a pH ranging from 2 to 4. The human body, on the other hand, is typically at 98.5 degrees Fahrenheit (37 degrees Celsius) and has a pH of 7.

Because archaea were not even discovered until about 25 years ago, says Grogan, they remain a relatively unknown domain of life. Recently, researchers have hinted that perhaps species of micro-organisms can differ by geographic location, but this study provides the most comprehensive evidence to date of that idea, he adds. The implications for understanding microbial life are far reaching.

Students in the culture lab.

Students in the culture lab.

“It is important to realize that disease-causing bacteria represent only a tiny fraction of a bewildering diversity of micro-organisms that we can grow in the laboratory. These cultured species, in turn, represent a tiny fraction of the species present in nature that are shaping our environment in ways we don’t fully understand. Now microbiologists have yet another level of complexity to consider, namely that differences within a microbial species can arise in different locations,” Grogan says.

“This process may be increasing the diversity of microbial life in many environments.”

Because the hot springs where archaea live can be so dangerous, visitors to places such as Yellowstone are warned to stay on designated walkways. Researchers, including Grogan, must collect samples in areas where tourists won’t see them, using special tools for safety. Grogan typically goes into the field to collect samples in June.

The sampling and cultivation work in this study was assisted by the following University of Cincinnati scholars: Professor of Biological Sciences Brian Kinkle, graduate student Greg D. Bell and undergraduate student Josh E. Hansen.

More Background

Related Stories

2

From communication degree to corporate entrepreneur

May 8, 2024

Many communication and public relations majors have careers in mind before they graduate from college, but few may aspire to careers in logistics. But Nick Reasoner, who graduated from UC’s College of Arts and Sciences with degrees in both, forged his path there, and went on to found TransLoop, an award-winning third-party logistics firm. Headquartered in Chicago, TransLoop now has five additional locations, from Nashville to Ft. Lauderdale to Denver. Since its founding, the company has taken the number 12 spot on Inc. 5000’s list of Fastest Growing Private Companies in America, and Reasoner has been named to Business Elite’s 40 Under 40.

3

UC grad shares path to success, from biochemistry to corporate...

May 7, 2024

As an undergrad in UC’s College of Arts and Sciences, majoring in biochemistry, Sujata Malhotra dreamed of going to medical school. But upon graduation she decided to go into the food and beverage industry, beginning her career at Cargill, Inc. She held various positions — quality assurance chemist, technical services manager, sales manager — while earning a master’s in business administration from Capital University, focusing on international marketing.

Debug Query for this