New Study Highlights Valuable Tool for Studying Living and Extinct Animals
University of Cincinnati scientists are reporting a significant finding that could open up entirely new explorations in the fields of ecology and paleoecology.
A mathematical analytical tool that was designed to predict a common elemental signal in surface water resulting in significant savings compared with traditional field surveys also is effective at predicting values for a wide range of materials, and is in fact most successful when applied to the bones and teeth of mammals. The research by
and
, assistant professors of geology at UC, and Clément Bataille, an earth scientist at the Chevron Corporation, is
for an upcoming issue of the research journal, Biological Reviews.
Strontium ratios in rocks vary depending on the type of rock and the rocks age. The
previously developed by Bataille and Gabriel J. Bowen, an associate professor of geology and geophysics at the University of Utah, uses U.S. bedrock geology and all major river systems and drainages to predict strontium isotope ratios (the ratio of strontium 87 to strontium 86) in surface waters.
The research, led by the University of Cincinnati, used the water model to compare predicted strontium isotope ratios in surface water, soil, vegetation, fish and mammal skeletal tissues from a massive collection of data led by Crowley across the U.S., excluding Alaska and Hawaii.
Anthropology masters student Bevin Kenney sampling water at Big Bone Lick State Park for her thesis.
Because the ratio of strontium 87 to strontium 86 in water, soil, vegetation and animal tissues predominantly reflect local geology, they can be used to distinguish geologically distinct regions as well as identify highly mobile populations, says Crowley. We tested how accurate the model was at predicting strontium ratios not just in water, but in additional materials relevant to ecological and paleoecological research.
The tool worked for all materials but appeared to be most successful in predicting strontium ratios in mammals. Theres every indication that mammals are better predicted using this model than other materials, says Miller.
We think the models success at predicting strontium ratios for mammals is related to how the landscape is sampled by this analytical tool, adds Crowley. The predictions for the larger mammals were better than the smaller mammals. This is likely because the amount of area covered by a larger mammal more closely resembles the space that the model understands.
Tracking strontium isotope ratios is a valuable tool beyond the science at top research institutions like UC. Strontium is a heavy earth metal that can be found in most organic substances such as bones, teeth, soils and plant tissues. As a result, strontium isotope ratios are used in fields including forensics research, animal poaching investigations, and even tracking where marijuana plants came from in drug busts.
Although strontium isotope analysis related to biological research is on the rise, the expense in terms of ground mapping has been prohibitive.
Geology undergraduate (now alumnus) Eric Baumann sampling a mastodon molar for his senior thesis.
Its a really powerful system, but in order to get an idea of where elephant tusks confiscated in Kenya came from, for example, investigators would have to track the strontium signals throughout the country or potentially all over East Africa, explains Miller. Models like the one we tested could make it possible to quickly get a good idea of where that animal was originally from.
The researchers say the water model provides a readily available source of background data for predicting strontium ratios for biologically relevant materials in regions where empirical data are lacking. The availability of increasingly high-quality modeled strontium data will dramatically expand the accessibility of this geochemical tool to ecological applications, says Crowley.
is a journal that covers the entire range of biological sciences, particularly the areas of modern biology. The journal is dedicated to publishing articles to inform non-specialist biologists as well as researchers in the field.
UCs nationally ranked
in the
McMicken College of Arts and Sciences
conducts field research around the world in areas spanning paleontology, quaternary geology, geomorphology, sedimentology, stratigraphy, tectonics, environmental geology and biogeochemistry.
Related Stories
Niehoff Center for Film & Media Studies kicks off 2026 series
February 16, 2026
The Niehoff Center for Film and Media Studies at the University of Cincinnati invites the campus and community to delve into the thought-provoking “2026 UC European Film Series: Perspectives on Our World.” Five recent films will be screened, with introductions and discussions led by UC faculty. Using a variety of genres and forms, these films encourage audiences to think about their place on the planet, in relation to civic engagement, to the natural world, to others, and even to space aliens in Moravia. “The series is a mix of realism, reality, comedy, and escapism that we hope will make you see things differently,” said Michael Gott, Neihoff Center director of programming and College of Arts and Sciences professor. “Film can make us rethink our ideas about the world and see things from different perspectives.” Past topics have ranged from artificial intelligence to migration, urban spaces, and women in film. Following each screening, discussions with filmmakers and UC faculty aim to spark meaningful conversations.
Dark Energy Survey sheds light on expansion of universe
February 13, 2026
Astronomy talks to University of Cincinnati physicist Jessica Muir about an international project examining dark energy. The project could help explain why the universe is expanding at an accelerating rate.
UC Alumni Association names top alumni award winners
February 12, 2026
The University of Cincinnati Alumni Association has announced this year’s recipients of its highest honors for UC alumni. The 2026 honorees include: Vinod K. Dham, CEAS ’77; Thomas D. Cassady, A&S ’76, Hon ’19; Padma Chebrolu, CECH ’92; Ryan C. Marable, PharmD, Phar ’13. Each year, the UC Alumni Association (UCAA) honors a select few of its more than 360,000 alumni based on their career accomplishments and contributions to the university and community, recognizing them during Alumni Week festivities each spring.