UC professor evaluates dust from dangerous powders
A UC professor models the dustiness of chemical powders within rotating drums to reduce health risks
UC mechanical engineering professor Milind Jog.
Chemical manufacturing byproducts like powders can be dangerous when inhaled. Knowing how these sometimes hazardous powders transform into aerosol is important in preventing long-term health problems.
“There is a risk of inhalation by whoever is handling these powders, so it’s necessary to classify them and determine which powders can be aerosolized,” University of Cincinnati professor Milind Jog said.
The National Institute for Occupational Safety and Health recently awarded Jog a grant to assess current methods for evaluating these powders.
A rotating drum apparatus is a widely used instrument to evaluate powder dustiness, or the tendency of a powder to aerosolize. Imagine a scaled-down version of the back of a cement truck.
Researchers place powders at the bottom of a drum, slowly rotate the drum and add a crossflow of air. The powders that aerosolize from this airflow are collected by a filter at the opposite end of the drum.
The problem with these drums, however, is that you can’t see what happens to the powders within the drum during aerosolization. Without this knowledge, a total understanding of these powders is limited.
Jog and his doctoral student, Hongyu Chen, are solving this problem through computational fluid dynamics modeling. With computational simulations, they can model the interaction between air flow and the particles, as well as the size differences of certain particles and their likelihood of being aerosolized.
This figure shows predicted paths of dust particles from the CFD simulation as the drum is rotated. Particle path lines are colored by their residence time in the drum. Image/Provided
“We are learning how these instruments work,” Jog said. “This modeling will tell us what really happens with these powders and if the process needs to be improved.”
Three different international standards exist for measuring dustiness, and each of these standards vary in drum shape, drum size and rotation and air speed. Over the course of the grant, Jog will measure, test and simulate all four of these standards.
Jog’s research can help safety regulators better understand how hazardous chemicals aerosolize and aid industry in generating less dust in its chemical manufacturing processes and operations. After the dust settles, workers handling these powders will be safer because of the impactful work coming out of UC.
Featured image at top: Workers stand in front of a chemical factory. PhillipBarrington/Pixabay
Become a Bearcat
Apply online or get more information about undergraduate enrollment by calling (513) 556-1100.
Related Stories
Before the medals: The science behind training for freezing mountain air
February 19, 2026
From freezing temperatures to thin mountain air, University of Cincinnati exercise physiologist Christopher Kotarsky, PhD, explained how cold and altitude impact Olympic performance in a recent WLWT-TV/Ch. 5 news report.
Blood Cancer Healing Center realizes vision of comprehensive care
February 19, 2026
With the opening of research laboratories and the UC Osher Wellness Suite and Learning Kitchen, the University of Cincinnati Cancer Center’s Blood Cancer Healing Center has brought its full mission to life as a comprehensive blood cancer hub.
Generous gift supports renovations to UC Blue Ash Veterinary Technology Building
February 18, 2026
A longstanding relationship between Greenacres Farm in Indian Hill and the Veterinary Technology Program at UC Blue Ash College has led to a generous gift that will support a major renovation project.