Watch Out, Sheldon Cooper A Theoretical Physics Discovery is About to Set the Real Research Field Buzzing

Bazinga! University of Cincinnati theoretical physicists are about to report on a controversial discovery that they say contradicts the work of researchers over the decades.

The discovery concerns the conventional approach toward bosonization-debosonization. For folks outside the physics lab and the whiteboard, this could affect calculations regarding the future of quantum computers as well as your electronic devices as they become smaller, faster and more advanced. Nayana Shah, a University of Cincinnati assistant professor of physics, and Carlos Bolech, a UC associate professor of physics, will be among researchers from around the world presenting groundbreaking research at the

March meeting of the American Physical Society, which takes place March 14-18 in Baltimore.

The discovery involves how to solve problems when there are strong interactions between particles that need to work in harmony with each other – bosons or fermions. An example of a fermion is an electron and an example of a boson is a light particle (photon).

To get these particles to interact with each other and therefore power the high-tech devices of the future, theoretical physicists do calculations, a sort of alchemy, to transform fermions into bosons, called bosonization, or in reverse apply formulas for debosonization. “This ‘refermionization’ is like magic, because it can turn originally intractable problems into exactly solvable ones,” explains Shah.

The researchers, however say they found that certain solutions with and without bosonization were not matching, despite the fact that the two were supposed to be exact.

Shah

and

Bolech

report that the issue involved violation of certain conservation laws in the bosonization-based procedure.

Image of UC physics researchers Nayana Shah and Carlos Bolech at the whiteboard.

Image of UC physics researchers Nayana Shah and Carlos Bolech at the whiteboard.

“An innovative reworking allowed us to incorporate some of the missing pieces into the steps of bosonization and debosonization and restore the magic,” says Bolech. The researchers applied their new consistent formalism toward what’s called the Nonequilibrium Kondo Problem in the physics world, a problem which can be applied to interacting electrons at the nano-scale – the very tiniest scale possible for electronics.

“What are the implications for the large body of past work that has used bosonization since the 1990s and earlier? Many results will have to be reworked,” says Bolech.

“The good news is that the consistent formalism gives a general recipe for how to proceed,” adds Shah.

Two papers reporting the research

were recently published in the American Physical Society's Condensed Matter Physics journal, Physical Review B.

The American Physical Society

is a non-profit membership organization dedicated to advancing the knowledge of physics through its research journals, scientific meetings, education, outreach, advocacy and international activities. APS represents more than 51,000 members, including physicists in academia, national laboratories, and industry in the United States and throughout the world.

Condensed matter being the largest subfield in physics, the APS March meeting draws nearly 10,000 physicists, scientists, and students from all over the world to share research from industry, universities, and major labs.

The University of Cincinnati was the first institution west of the Appalachian Mountains to offer a PhD in Physics.

The UC Physics Department

is housed in the

McMicken College of Arts and Sciences.

Related Stories

1

Love it or raze it?

February 20, 2026

An architectural magazine covered the demolition of UC's Crosley Tower.

2

Discovery Amplified expands research, teaching support across A&S

February 19, 2026

The College of Arts & Sciences is investing in a bold new vision for research, teaching and creative activity through Discovery Amplified. This initiative was launched through the Dean’s Office in August 2024, and is expanding its role as a central hub for scholarly activity and research support within the Arts & Sciences (A&S) community. Designed to serve faculty, students, and staff, the initiative aims to strengthen research productivity, foster collaboration, and enhance teaching innovation. Discovery Amplified was created to help scholars define and pursue academic goals while increasing the reach and impact of A&S research and training programs locally and globally. The unit provides tailored guidance, connects collaborators, and supports strategic partnerships that promote innovation across disciplines.

3

Niehoff Center for Film & Media Studies kicks off 2026 series

February 16, 2026

The Niehoff Center for Film and Media Studies at the University of Cincinnati invites the campus and community to delve into the thought-provoking “2026 UC European Film Series: Perspectives on Our World.” Five recent films will be screened, with introductions and discussions led by UC faculty. Using a variety of genres and forms, these films encourage audiences to think about their place on the planet, in relation to civic engagement, to the natural world, to others, and even to space aliens in Moravia. “The series is a mix of realism, reality, comedy, and escapism that we hope will make you see things differently,” said Michael Gott, Neihoff Center director of programming and College of Arts and Sciences professor. “Film can make us rethink our ideas about the world and see things from different perspectives.” Past topics have ranged from artificial intelligence to migration, urban spaces, and women in film. Following each screening, discussions with filmmakers and UC faculty aim to spark meaningful conversations.