Researchers Identify Key Molecular Components Linking Circadian Rhythms and Cell Division Cycles
CINCINNATIResearchers at the University of Cincinnati (UC) have identified key molecular components linking circadian rhythms and cell division cycles in Neurospora crassa, providing insights that could lead to improved disease treatments and drug delivery.
The researchers in the UC College of Medicine Department of Molecular and Cellular Physiology, led by Christian Hong, PhD, published their findings Monday, Jan. 13, online ahead of print in PNAS (Proceedings of the National Academy of Sciences).
"Our work has large implications for the general understanding of the connection between the cell cycle and the circadian clock, says Hong, an assistant professor in the molecular and cellular physiology department who collaborated with an international team of researchers on the project.
Funding for Hongs research was provided by a four-year, $3.7 million grant from the Defense Advanced Research Projects Agency (DARPA), an agency of the U.S. Department of Defense. He also received startup funds from UCs molecular and cellular physiology department.
The circadian rhythm, often referred to as the biological clock, is a cycle of biological activity based on a 24-hour period and generated by an internal clock synchronized to light-dark cycles and other external cues.
"Everything has a schedule, and we are interested in understanding these schedules at a molecular level, Hong says. "We also wanted to know the components that connect two different oscillators (the circadian clock and cell division, or mitosis).
Using the filamentous (thread-like) fungi Neurospora crassa, the researchers investigated the coupling between the cell cycle and the circadian clock using mathematical modeling and experimentally validated model-driven predictions. They demonstrated a mechanism that is conserved (constant) in Neurospora as in mammals, which results in circadian clock-gated mitotic cycles.
"The cell divisions happened during a certain time of day, Hong says, "and they were molecularly regulated by the mechanisms of circadian rhythms.
The researchers showed that a conserved coupling between the circadian clock and the cell cycle exists via serine/threonine protein kinase-29 (STK-29), the Neurospora homolog (possessing similar DNA sequence) of mammalian WEE1 kinase.
Additionally, the researchers conducted phase-shift experiments in which they transferred Neurospora to constant darkness, then administered a 90-minute pulse of white fluorescent light at indicated time points in order to induce phase-shift.
"We were able to show that when we phase-shift the circadian clock, we also observe phase-shifting of the cell cycle components, Hong says.
By building on experimentally validated mathematical models from Neurospora, researchers will be able to make predictions in other Neurospora strains and mammalian cells.
As Hong puts it, "This discovery will serve as a stepping stone for further investigations to uncover conserved principles of coupled mechanisms between the cell cycle and circadian rhythms.
Related Stories
Make Hoxworth Blood Center’s special holiday events part of your family celebrations this December
December 12, 2025
This December, Hoxworth Blood Center, University of Cincinnati, is inviting families across Greater Cincinnati to add something truly meaningful to their holiday traditions: giving the gift of life. With festive community events, beloved local partners and special thank-you gifts for donors, Hoxworth is making it easier, and more heartwarming than ever, to roll up your sleeves and help save lives close to home.
Ohio nurses weigh in on proposed federal loan rule
December 12, 2025
Spectrum News journalist Javari Burnett spoke with UC Dean Alicia Ribar and UC nursing students Megan Romero and Nevaeh Haskins about proposed new federal student loan rules. Romero and Haskins, both seniors, were filmed in the College of Nursing’s Simulation Lab.
New combination treatment improves multiple myeloma outcomes
December 11, 2025
The University of Cincinnati Cancer Center's Ed Faber, DO, provided commentary to Medscape on the COBRA study that found the combination of carfilzomib combined with lenalidomide and dexamethasone (KRd) shows significantly greater efficacy than the previous standard of care.